Space Charge Effects in Linacs

CERN-School High Intensity Limitations, 2015November 2-11, 2015

> Ingo HofmannGSI Darmstadt / TU Darmstadt

Overview

 \Box This lecture focuses on direct space charge

- p or heavy ion high intensity linacs at non- or weakly relativisticenergies
- electrostatic interaction – ignorable image charge effects
- several mechanisms also relevant to circular accelerators!
- limited relevance to space charge at injection of e-linacs
- \Box Introduction to envelopes and space charge
- □ Space charge resonances & instabilities
	- nearly all sources of emittance growth are of resonant nature (why?)
	- -**EXEDEE 12 FEE 6 THREE main criteria** for linac design
- \Box Mismatch, errors, halo \rightarrow Beam loss
- **□** Summary

Overview on high power linacs

Levels of description in linacs

Calculation of direct space charge force

- bunches usually close to spherical (within factor of 2)
- -→ image charges usually negligible (pipe far away)
forces E – – linearly increasing with amplitudes in
- **forces** $E_{x,y,z}$ **= linearly increasing with amplitudes in <u>uniform bunch</u></u>**
- -■ in non-uniform bunch non-linear $\mathsf{E}_{\mathsf{x},\mathsf{y},\mathsf{z}}$ not negligible \to major source of ε growth

$$
E_x = \frac{3qN(1-f)}{4\pi\varepsilon_0 (r_x + r_y)r_z} \frac{x}{r_x}, \quad E_z = \frac{3qNf}{4\pi\varepsilon_0 r_x r_y} \frac{z}{r_z}
$$

for uniform ellipsoid with semi - axi $\mathbf{r}_{\text{x,y,z}}$

Sacherer's r.m.s envelope equations

and the equilibrium problem in 2d (infinitely long) beams

- > Linear force (lattice + space charge) predicts rms emittances are constant!
	- •with space charge exact self-consistent solution is 2D – KV
	- equivalent to envelope equation (transversely uniform density, infinitely•long)
- \triangleright for non-KV distribution the r.m.s envelope equations still hold in good approximation! (Sacherer, ~1973)
	- \bullet non-uniform density leads \rightarrow nonlinear space charge force
	- **surprisingly r.m.s. envelope equations still very good**•**approximation - if emittances constant!**
	- •**applies ~ also to 3D case of "bunched beam" !**

Rms envelope equations

 valid under assumption of constant emittances -

$$
\begin{vmatrix}\na_x^{"} + \kappa_x(s)a_x - \frac{\varepsilon_x^2}{a_x^3} - \frac{3K(1-f)}{(a_x + a_y)a_z} = 0 \\
a_y^{"} + \kappa_y(s)a_y - \frac{\varepsilon_y^2}{a_y^3} - \frac{3K(1-f)}{(a_x + a_y)a_z} = 0 \\
a_z^{"} + \kappa_z(s)a_z - \frac{\varepsilon_z^2}{a_z^3} - \frac{3Kf}{a_x a_y} = 0\n\end{vmatrix}
$$
\n
$$
\begin{vmatrix}\n\text{ms beam sizes: } a_{x,y,z} = r_{x,y,z}/\sqrt{5} \\
\text{rms emittances: } \varepsilon_x^2 = x^2 \frac{1}{x^2 - xx^2} \\
\text{space charge parameter:} \\
K = \frac{qN}{20\sqrt{5\pi\varepsilon_0\beta^2\gamma^3 mc^2}} \\
\text{When are the rms emittances constant?} \\
\text{E}_{99\%, \varepsilon_{99.99\%} \text{ equally important!}}\n\end{vmatrix}
$$

numerous studies: Struckmeier and Reiser, Part. Accel. 14 (1984)Li and Zhao, PRSTAB 17 (2014)

Linac beam dynamics is different!

- varying structures, focusing and tunes –

Example of linac structure effect on beam dynamics- varying structures and focusing – concern: emittance increase, halo, beam loss & activationFront end S-ILC ILC-1 $ILC-2$ Proposal of a sc 8 GeV H**-RFQ** CH SSR-1 SSR-2 **TSR** proton driver for Fermilab IS MEBT **(Project X)** *P. Ostroumov (ANL), 2006* $4.0 2.0$ x rms[cm] 3.5 y rms[cm] Y $3.0 -$ Xmax[cm] 1.8 2.5 \overline{z} Ymax[cm] 2.0 RMS emittance growth factor 1.5 1.6 1.0 Beam size (cm) 0.5 0.0 1.4 -0.5 -1.0 -1.5 1.2 -2.0 -2.5 -3.0 -3.5 -4.0 100 200 300 400 600 700 0.8 Ω 500 Ω 100 200 300 400 500 600 700 Distance (m) Distance (m)

Transverse envelopes of 32 mA beam along the linac. The black solid line shows the aperture.

How to characterize space charge strength?

- \bullet lattice: k_{0x} , k_{0y} , k_{0z} describe lattice
- reduced by space charge to $\mathsf{k}_\mathsf{x},\, \mathsf{k}_\mathsf{y},\, \mathsf{k}_\mathsf{z}$ \qquad (k² \sim force)
- \bullet "tune depression" k_x/k_{0x} or k_z/k_{0z} relative importance of space charge;
- •"convention" in p linacs: $k_x/k_{0x} < 0.7 \sim$ "space charge" dominated": effective force ~ reduced to half by space charge
- \bullet $k_x/k_{0x} \rightarrow 0$ strict space charge limit
- •=0 is "cold" beam with zero emittance

Idealized "demo lattice" - for simplicityperiodic cells / RF gaps + well-separated resonant effects

$F/2 - O - D - O - F/2$ with symmetric RF gaps

How to get more space charge dominated?downwards k0xy-ramp – envelope model "demo lattice"

Secure

Application to intrabeam stripping

serious issue in H- high power linacs cure: expand beam!

7

- 2010: SCL losses can be caused by Intra Beam Stripping of H⁻ (Valeri Lebedev, FNAL)
- • By lowering SCL quads' field gradients the losses were reduced to an acceptable level.

 H^-

 \mathbf{H}^{-}

 \bullet Weaker focusing – more space charge dominated

 H^-

 H^0

Equilibrium - Resonance – Instability

- Sources of emittance growth – any accelera **sources of emittance growth – any accelerator -**

deviation from stable equilibrium = "mismatch"
small deviations \rightarrow response bounded by initial value

- •small deviations \rightarrow response bounded by initial value
return to initial position if damping exists – here part
- return to initial position if "damping" exists here particles •
- • \cdot \rightarrow energy into "damping particles"

periodic kick

resonant excitation

- •increasing amplitude
- limited by de-tuning or loss•

instabilitysmall deviations \rightarrow

- m all deviations \rightarrow runaway
no return to initial position •
- \rightarrow instability (also resonant) •

Beam: potential from magnets/RF **and** self-consistent electric field **all 3** involve **resonant** mechanisms – also in linac!

Full particle-in-cell simulation

TRACEWIN code for linac design and verification

•**TRACEWIN: design and verification**

- −**http://irfu.cea.fr/Sacm/logiciels/.**
- •Grid-based Poisson solver "inside" bunch
- • analytical continuation outside
	- − model halo particles accurately far away from core

• free boundary:

- − ignore image charges direct space charge dominant
- •# simulation particles $\sim 10^7$
	- − $-$ worry about loss at level 10⁻⁶
- •"error studies": statistics with $\sim 10^3$ error seeded linacs
	- − → effect on beam loss
nited spatial resolution
- limited spatial resolution
	- − noise needs to be checked

Full particle-in-cell (PIC) in "demo-lattice"

1000 downwards k0xy-ramp – demonstration of main resonant effects

Sources of emittance growth in linacs

in principle also relevant to circular accelerators

Non-resonant

Initial density profile mismatch

- • if starting with non-selfconsistent initial distribution
- evolves very fast: ~¼ plasma period (typically •< 1 betatron period)

Resonant instability by periodic | emittances (rings: "Montague resonance") structure

"90 degree" stopband envelope instability"

- •exponential growth from initial noise
- •involves a **resonance** condition
- •requires time (distance) to develop

Distinction instability – resonance sometimes confused

"Classical" resonances

- 1. Structure resonances
	- driven by periodically modulated space •charge force \rightarrow resonance condition
- 2. Anisotropy
	- • driven by energy (emittance or "temperature") difference between degrees of freedom
	- is a difference resonance only exchange of •

Resonant halo formation

driven by rms mismatch → periodic force from
snace charge space charge

- •pushes particles into a halo
- • also caused by random errors in magnet optics

Not all equally serious

rsu

Initial density profile mismatch – rms matched!

"un-matched" nonlinear field energy emittance growth

- • discovered in 1980's under **"nonlinear field energy"**
	- **1D:** Wangler et al., IEEE Trans. Nucl. Sci. NS·32, 2196 (1985)
	- **3D:** Hofmann and Struckmeier, Part. Accel. 81, 69 (1987)
- •always present at injection of a space charge dominated beam
- reason: space charge repulsion wants to **flatten the beam** the more the closer to space •charge limit (k/k₀ \rightarrow 0) (self-consistent solution including **non-parabolic space charge potential**)
- •"Plasma effect" known as "Debye shielding" – **a non-resonant effect** (only one here!)

Initial density effect cont'd

- • Uniform density bunch has minimum electrostatic Coulomb energy - comparing bunches with *same* charge and *same* rms size
- • if non-uniform density is injected at high space charge **and ignoring profile flattening** the **extra electrostatic energy**∆*W* transforms into additional **rms emittance**

$$
\Delta W = \left[\frac{\varepsilon_0}{2} \iiint E^2 dx dy dz\right]_{initial} - \left[\frac{\varepsilon_0}{2} \iiint E^2 dx dy dz\right]_{profile-matched} \rightarrow \Delta \varepsilon_{x,y,z}
$$

$$
\frac{\varepsilon_{\text{final}}}{\varepsilon_{\text{initial}}}\approx\left[1-\frac{1}{3}\left(\frac{k_0^2}{k^2}-1\right)\left(U_{\text{final}}-U_{\text{initial}}\right)\right]^{1/2}
$$

see: Hofmann and Struckmeier, 1987

Initial density effect cont'd

case 1

$→ 1$ **st criterion for high-current linac design: "smooth real estate phase advance"**

Unmatched density profile:

- \checkmark inevitable at injection: cannot match injection density profile to profile of self-potential \rightarrow self-matching with ε-growth
- \checkmark occurs again, if sudden jump in focusing strength (phase advance per meter!) often required by different RF structures
- **avoid:** need to **design linac lattice smoothly** by inserting gradual transitions to allow adiabatic density adjustment("smooth real estate phase advance"**)**

Example ESS: "smooth" designsmooth real estate phase advance (deg/m)

M. Eshraqi, HB2010

I GLST

Second candidate (in "demo" lattice):

* ® v
 External constants in the symbolic nomenclature:

*) driven by space charge pseudo-octupole

Do we expect 2nd order envelope instability or 4th order resonance? **Let experiment decide!**

Structure resonance / instability in periodic focusing

Mathieu equation: parametric resonance

Avoid Mathieu instability at k $_{0}$ = 180 $^{\rm o}$ ^x'' = (a - 2 q cos2φ)x =02:1 structure resonance : Resonance or instability? particle motion is unstable due to structure instability of central orbit (zero amplitude - perturbed)••of fundamental focusing cellperturbing force \sim initial amplitude perturbation \rightarrow •instability with exponential growthstructure = basic resonance: finite driving force already present by•FODO cellstructurechange length at double $0.4₁$ quasi-periodic with increasing amplitude $n/m=k₀$ freuquency $n=1$ 0.2 $m=2$ $r/8$ $-0.4\frac{1}{0}$ $\overline{2}$ $z/S \rightarrow$ *source: Reiser book*

24

Adding space charge – additional mechanism: "Envelope instability" – a 2nd order structure instability

Experiment on $k_x \sim 90^0$ stopband in 2008 at GSI-UNILAC first measurement of a **space charge structure resonance** in a linac! L. Groening et al., PRL, 2009 (in context of HIPPI campaign)

Main question: $2k_{x} \sim 180^{0}$ = envelope instability $4k_x \sim 360^0$ = fourth order resonance (driven by space charge octupole in non-uniform beam) both may occur! - *experiment should decidewhich one dominates!*

Complete stopbands show higher complexity than could be concluded from UNILAC-experiment

2nd criterion for linac design: k0x < 90⁰

For $k_{ox} < 90^0$ avoid:

- \triangleright envelope instability as well as
- ≥ 4 th order resonance

Envelope instability
e constability of

- •a real instability growing exponentially from small initial perturbation
- •no effect for $k_{xy}=90^0$, requires $k_{0xy}>90^0$ and $k_{xy}<90^0$ \rightarrow shifted from single narticle resonance condition! particle resonance condition!
- **← Fourth order resonance**
	- •driven by "space charge octupole"
	- •stopband partially overlapping with envelope instability

Might be observable (which one?) also in SIS 18 (12 Sup-Per) for Q_v \rightarrow 3 \rightarrow k_{0xy} \rightarrow 90⁰ (possibly by bunch compression with Q_{0y}=3.2)

Structural instability – resonance

in connection with space charge (only)

Instabilities require:

- > driving force (space charge multipole):
	- **EXA** absent initially seeded only on noise level!
	- grows with instability going on
	- **•** feedback leads to exponential growth
- > normally resonance condition needed \rightarrow resonant instability
> theoretically they exist in all orders practically may be limit
- \blacktriangleright theoretically they exist in all orders – practically may be limited (mixing)
- no justification on usual resonance diagram

Resonances:

- \triangleright for space charge multipoles present initially with non-uniform density
 \triangleright multipole might grow further uself espointent treatment. \cdot a mix of
- A multipole might grow further self-consistent treatment \rightarrow a mix of resonance and instability resonance and instability
- > theoretically in all orders mixing!

Higher order instabilities / resonances?

discussed in 2015 PRL paper

3rd order instability + 6th etc. resonances<few % effect - negligible

Third candidate (in "demo-lattice"):

Emittance exchange, how?

Selfconsistent perturbation theory of space charge modes in anisotropic KV-beam

requires Vlasov-Poisson equations:

$$
\frac{df}{dt} = \frac{\partial f}{\partial t} + \sum_{i=1}^{2} \left(\dot{x}_i \frac{\partial f}{\partial x_i} + \dot{p}_i \frac{\partial f}{\partial p_i} \right) = 0
$$
\n
$$
\nabla \cdot E = \frac{q}{\varepsilon_0} \iint f(x_1, x_2, p_1, p_2, t) dp_1 dp_2
$$
\nperturbation analysis $f = f_0 + f_1$
\naround anisotropic KV-beam:
\n
$$
f_0 \sim \delta(p_x^2 + v_x^2 x^2 + T(p_y^2 + v_y^2 y^2) - 1)
$$
\n
$$
\nabla^2 \Phi_1 = -\frac{q}{\varepsilon_0} n_1 - \frac{q}{\varepsilon_0} \int f_1 dp_1 dp_2
$$
\n
$$
n^{th} \text{ order:}
$$
\n
$$
\Phi_1 = \Phi_1 (x^n + ax^{n-1}y +)e^{i\omega}
$$
\n
$$
f_n^{theory see:}
$$
\n
$$
f_n^{theory:}
$$
\n
$$
f_n^{avg:}
$$
\

35

Brability chart as tool for linac design
■ **CEWIN: plot tune footprint along linac - here "demo-latt TRACEWIN: plot tune footprint along linac - here "demo-lattice"**

37

Experimental verification cont´d

Experimental Evidence of Space Charge Driven Emittance Couplingin High Intensity Linear AcceleratorsL. Groening et al. PRL 103, 224801 (2009)

3rd criterion for linac design: avoid k^z / kxy~1

$$
T \equiv \frac{T_z}{T_x} \approx \frac{\mathcal{E}_z k_z}{\mathcal{E}_x k_x}
$$

EP: T = 1

- • no need to design linac "equipartitioned" with T=1
	- −unnecessary constraint on design freedom
- •just avoid k_z / k_{xy} ~1 exchange resonance
	- −all "white" zones "good"
	- $-$ helps avoid exchange between $\varepsilon_{\rm z}$ and $\varepsilon_{\rm xy}$ (intensity dependent design uncertainty!)
	- avoids a danger of halo coupling

Beam halo coupling x-y z under 2kz – 2kxy~0 a possible risk - might be even more dangerous!

40

2 examples "avoiding" ε**-exchange**

Project X, P. Ostroumov. 2008

651

Another example: CSNS - DTL

General rule: minimize rms mismatch + lattice errorssource of halo formation + beam loss

cont'd initial mismatch

Maximum halo little dependent on

- •# simulation particles
- Strength of initial mismatch •
- •With transitions \sim 11 σ "safe"

Conclusions

\blacktriangleright Extensively studied "resonant" mechanisms

- sources of emittance and halo growth
- beam dynamics in principle on solid ground
- in practice very transient situations
- $\sum_{i=1}^{n}$ In real linacs try to avoid them
	- often severe impact on design
	- sometimes compromise
- \blacktriangleright Random errors of linac structure "mix" resonant mechanisms with random effects
	- statistical studies (questions open)
	- more to understand theoretically
- ➤ New projects can benefit much from SNS + JPARC experience