

Space Charge Effects in Linacs

CERN-School High Intensity Limitations, 2015 November 2-11, 2015

> Ingo Hofmann GSI Darmstadt / TU Darmstadt

Overview

□ This lecture focuses on direct space charge

- p or heavy ion high intensity linacs at non- or weakly relativistic energies
- electrostatic interaction ignorable image charge effects
- several mechanisms also relevant to circular accelerators!
- Iimited relevance to space charge at injection of e⁻ linacs
- □ Introduction to envelopes and space charge
- □ Space charge resonances & instabilities
 - nearly all sources of emittance growth are of resonant nature (why?)
 - discuss three main criteria for linac design
- \Box Mismatch, errors, halo \rightarrow Beam loss
- Summary

Overview on high power linacs

Levels of description in linacs

Calculation of direct space charge force

- bunches usually close to spherical (within factor of 2)
- \rightarrow image charges usually negligible (pipe far away)
- forces E_{x,y,z} = linearly increasing with amplitudes in <u>uniform bunch</u>
- in non-uniform bunch non-linear $E_{x,y,z}$ not negligible \rightarrow major source of ε growth

$$E_x = \frac{3qN(1-f)}{4\pi\varepsilon_0(r_x + r_y)r_z} \frac{x}{r_x}, \quad E_z = \frac{3qNf}{4\pi\varepsilon_0r_xr_y} \frac{z}{r_z}$$

for uniform ellipsoid with semi - axi $\mathbf{r}_{x,y,z}$

Sacherer's r.m.s envelope equations

and the equilibrium problem in 2d (infinitely long) beams

- Linear force (lattice + space charge) predicts rms emittances are constant!
 - with space charge exact self-consistent solution is 2D KV
 - equivalent to envelope equation (transversely uniform density, infinitely long)
- for non-KV distribution the r.m.s envelope equations still hold in good approximation! (Sacherer, ~1973)
 - non-uniform density leads \rightarrow nonlinear space charge force
 - surprisingly r.m.s. envelope equations still very good approximation - if emittances constant!
 - applies ~ also to 3D case of "bunched beam" !

Rms envelope equations

- valid under assumption of constant emittances

$$a_{x}'' + \kappa_{x}(s)a_{x} - \frac{\varepsilon_{x}^{2}}{a_{x}^{3}} - \frac{3K(1-f)}{(a_{x}+a_{y})a_{z}} = 0$$

$$a_{y}'' + \kappa_{y}(s)a_{y} - \frac{\varepsilon_{y}^{2}}{a_{y}^{3}} - \frac{3K(1-f)}{(a_{x}+a_{y})a_{z}} = 0$$

$$a_{z}'' + \kappa_{z}(s)a_{z} - \frac{\varepsilon_{z}^{2}}{a_{z}^{3}} - \frac{3Kf}{a_{x}a_{y}} = 0$$

When are the rms emittances constant?

$$\varepsilon_{99\%,} \varepsilon_{99.99\%}$$
 equally important!

numerous studies: Struckmeier and Reiser, Part. Accel. 14 (1984)Li and Zhao, PRSTAB 17 (2014)

Linac beam dynamics is different!

varying structures, focusing and tunes –

Example of linac structure effect on beam dynamics - varying structures and focusing concern: emittance increase, halo, beam loss & activation S-ILC ILC-1 ILC-2 Front end Proposal of a sc 8 GeV H RFQ CH SSR-1 SSR-2 TSR proton driver for Fermilab IS MEBT (Project X) P. Ostroumov (ANL), 2006 4.0 -2.0 x rms[cm] 3.5 -X y rms[cm] 3.0 -Y Xmax[cm] 1.8 2.5 z Ymax[cm] 2.0 RMS emittance growth factor 1.5 1.6 1.0 Beam size (cm) 0.5 0.0 1.4 -0.5 -1.0 -1.5 12 -2.0 -2.5 =3.0 1.0 -3.5 -4.0 100 200 300 400 600 700 0.8 Ó 500 100 200 300 400 500 600 700 Distance (m) Distance (m)

Transverse envelopes of 32 mA beam along the linac. The black solid line shows the aperture.

How to characterize space charge strength?

- lattice: k_{0x} , k_{0y} , k_{0z} describe lattice
- reduced by space charge to k_x , k_y , k_z (k² ~ force)
- "tune depression" k_x/k_{0x} or k_z/k_{0z} relative importance of space charge;
- "convention" in p linacs: k_x/k_{0x} < 0.7 ~ "space charge dominated": effective force ~ reduced to half by space charge
- $k_x/k_{0x} \rightarrow 0$ strict space charge limit
- =0 is "cold" beam with zero emittance

Idealized "demo lattice" - for simplicity periodic cells / RF gaps + well-separated resonant effects

F/2 - O - D - O - F/2 with symmetric RF gaps

How to get more space charge dominated? downwards k_{0xv}-ramp – envelope model "demo lattice"

Application to intrabeam stripping

serious issue in H⁻ high power linacs \rightarrow cure: expand beam!

- 2010: SCL losses can be caused by Intra Beam Stripping of H⁻ (Valeri Lebedev, FNAL)
- By lowering SCL quads' field gradients the losses were reduced to an acceptable level.

 H^{-}

 H^{-}

• Weaker focusing – more space charge dominated

 H^{-}

 H^0

Equilibrium - Resonance – Instability

sources of emittance growth – any accelerator

deviation from stable equilibrium = "mismatch"

- small deviations \rightarrow response bounded by initial value
- return to initial position if "damping" exists here particles
- → energy into "damping particles"

periodic kick

resonant excitation

- increasing amplitude
- limited by de-tuning or loss

instability small deviations → runaway

- no return to initial position
- \rightarrow instability (also resonant)

Beam: potential from magnets/RF and self-consistent electric field all 3 involve resonant mechanisms – also in linac!

Full particle-in-cell simulation

TRACEWIN code for linac design and verification

• TRACEWIN: design and verification

- http://irfu.cea.fr/Sacm/logiciels/.
- Grid-based Poisson solver "inside" bunch
- analytical continuation outside
 - model halo particles accurately far away from core

• free boundary:

- ignore image charges direct space charge dominant
- # simulation particles ~ 10⁷
 - worry about loss at level 10⁻⁶
- "error studies": statistics with ~ 10³ error seeded linacs
 - \rightarrow effect on beam loss
- limited spatial resolution
 - \rightarrow noise needs to be checked

Full particle-in-cell (PIC) in "demo-lattice" 100^o downwards k_{0xy}-ramp – demonstration of main resonant effects

Sources of emittance growth in linacs

in principle also relevant to circular accelerators

Non-resonant

Initial density profile mismatch

- if starting with non-selfconsistent initial distribution
- evolves very fast: ~¹/₄ plasma period (typically < 1 betatron period)

Resonant instability by periodic structure

"90 degree" stopband envelope instability"

- exponential growth from initial noise
- involves a **resonance** condition
- requires time (distance) to develop

Distinction instability – resonance sometimes confused

"Classical" resonances

1. Structure resonances

- driven by periodically modulated space charge force → resonance condition
- 2. Anisotropy
 - driven by energy (emittance or "temperature")
 difference between degrees of freedom
 - is a difference resonance only exchange of emittances (rings: "Montague resonance")

Resonant halo formation

driven by rms mismatch \rightarrow periodic force from space charge

- pushes particles into a halo
- also caused by random errors in magnet optics

Not all equally serious

G S 1

Initial density profile mismatch – rms matched!

"un-matched" nonlinear field energy → emittance growth

- discovered in 1980's under "nonlinear field energy"
 - 1D: Wangler et al., IEEE Trans. Nucl. Sci. NS·32, 2196 (1985)
 - **3D:** Hofmann and Struckmeier, Part. Accel. 81, 69 (1987)
- always present at injection of a space charge dominated beam
- reason: space charge repulsion wants to flatten the beam the more the closer to space charge limit (k/k₀→0) (self-consistent solution including non-parabolic space charge potential)
- "Plasma effect" known as "Debye shielding" a non-resonant effect (only one here!)

Initial density effect cont'd

- Uniform density bunch has minimum electrostatic Coulomb energy comparing bunches with *same* charge and *same* rms size
- \rightarrow if non-uniform density is injected at high space charge **and ignoring profile flattening** the **extra electrostatic energy** ΔW transforms into additional **rms emittance**

$$\Delta W \equiv \left[\frac{\varepsilon_0}{2} \iiint E^2 dx dy dz\right]_{\text{initial}} - \left[\frac{\varepsilon_0}{2} \iiint E^2 dx dy dz\right]_{\text{profile-matched}} \rightarrow \Delta \varepsilon_{x,y,z}$$

$$\frac{\varepsilon_{final}}{\varepsilon_{initial}} \approx \left[1 - \frac{1}{3} \left(\frac{k_0^2}{k^2} - 1\right) \left(U_{final} - U_{initial}\right)\right]^{1/2}$$

see: Hofmann and Struckmeier, 1987

Initial density effect cont'd

case 1

\rightarrow 1st criterion for high-current linac design: "smooth real estate phase advance"

Unmatched density profile:

- ✓ inevitable at injection: cannot match injection density profile to profile of self-potential \rightarrow self-matching with ε -growth
- ✓ occurs again, if sudden jump in focusing strength (phase advance per meter!) often required by different RF structures
- v avoid: need to design linac lattice smoothly by inserting gradual transitions to allow adiabatic density adjustment ("smooth real estate phase advance")

Example ESS: "smooth" design smooth real estate phase advance (deg/m)

M. Eshraqi, HB2010

Second candidate (in "demo" lattice):

symbolic nomenclature:

	Linac	Circular machine
Envelope instability	2k _{xy} ~180 ⁰	2Q _{xy} ~1/ ₂
4 th order resonance [*])	4k _{xy} ~360 ⁰	4Q _{xy} ~1

*) driven by space charge pseudo-octupole

Do we expect 2nd order envelope instability or 4th order resonance? Let experiment decide!

Structure resonance / instability in periodic focusing

Mathieu equation: parametric resonance

Adding space charge – additional mechanism: "Envelope instability" – a 2nd order structure instability

Experiment on k_x ~ 90^o stopband in 2008 at GSI-UNILAC first measurement of a space charge structure resonance in a linac! (in context of HIPPI campaign) L. Groening et al., PRL, 2009 16 cells! Main question: Matching to DTL Alvarez DTL Section $2k_x \sim 180^0$ = envelope instability From A1 HSI $4k_x \sim 360^0$ = fourth order resonance (driven by Trans, emittance measurement Long, emittance measurement space charge octupole in non-uniform beam) Beam current transformer Gas Stripper Rebuncher Phase probe $^{40}\text{Ar}^{1+} \rightarrow {}^{40}\text{Ar}^{10+}$ Faraday cup both may occur! - experiment should decide which one dominates! Horizontal Horizontal Vertical Horizontal Vertical Vertical 0.40 initial Experiment 0.35 ···o·· DYNAMION ··· D·· PARMILA

Complete stopbands show higher complexity than could be concluded from UNILAC-experiment

2nd criterion for linac design: k_{0x} <

For $k_{ox} < 90^{\circ}$ avoid:

- \succ envelope instability as well as
- ➢ 4th order resonance

✓ Envelope instability

- a real instability growing exponentially from small initial perturbation
- no effect for k_{xy}=90⁰, requires k_{0xy}>90⁰ and k_{xy}<90⁰ → shifted from single particle resonance condition!
- ✓ Fourth order resonance
 - driven by "space charge octupole"
 - stopband partially overlapping with envelope instability

Might be observable (which one?) also in SIS 18 (12 Sup-Per) for $Q_y \rightarrow 3 \rightarrow k_{0xy} \rightarrow 90^0$ (possibly by bunch compression with $Q_{0y}=3.2$)

Structural instability – resonance

in connection with space charge (only)

Instabilities require:

- driving force (space charge multipole):
 - absent initially seeded only on noise level!
 - grows with instability going on
 - feedback leads to exponential growth
- \succ normally resonance condition needed \rightarrow resonant instability
- theoretically they exist in all orders practically may be limited (mixing)
- > no justification on usual resonance diagram

Resonances:

- for space charge multipoles present initially with non-uniform density
- ➤ multipole might grow further self-consistent treatment → a mix of resonance and instability
- theoretically in all orders mixing!

Higher order instabilities / resonances?

discussed in 2015 PRL paper

3rd order instability + 6th etc. resonances < few % effect - negligible

Third candidate (in "demo-lattice"):

Emittance exchange, how?

Selfconsistent perturbation theory of space charge modes in anisotropic KV-beam

requires Vlasov-Poisson equations:

$$\begin{aligned} \frac{df}{dt} &= \frac{\partial f}{\partial t} + \sum_{i=1}^{2} \left(\dot{x}_{i} \frac{\partial f}{\partial x_{i}} + \dot{p}_{i} \frac{\partial f}{\partial p_{i}} \right) = 0 \\ \nabla \cdot E &= \frac{q}{\varepsilon_{0}} \iint f(x_{1}, x_{2}, p_{1}, p_{2}, t) dp_{1} dp_{2} \\ \text{perturbation analysis } f &= f_{0} + f_{1} \\ \text{around anisotropic KV - beam :} \\ f_{0} &\sim \delta(p_{x}^{2} + v_{x}^{2}x^{2} + T(p_{y}^{2} + v_{y}^{2}y^{2}) - 1) \\ \nabla^{2} \Phi_{1} &= -\frac{q}{\varepsilon_{0}} n_{1} - \frac{q}{\varepsilon_{0}} \int f_{1} dp_{1} dp_{2} \\ \frac{n^{th} \text{ order :}}{\Phi_{1} = \Phi_{1} (x^{n} + ax^{n-1}y + ...)e^{i\omega t}} \end{aligned}$$
 $\rightarrow \text{ analytical dispersion relations for orders n=2, 3, 4}$

→ Stability chart as tool for linac design TRACEWIN: plot tune footprint along linac - here "demo-lattice"

Experimental verification cont'd

Experimental Evidence of Space Charge Driven Emittance Coupling in High Intensity Linear Accelerators L. Groening et al. PRL 103, 224801 (2009)

3rd criterion for linac design: avoid k, / k,

$$T \equiv \frac{T_z}{T_x} \approx \frac{\varepsilon_z k_z}{\varepsilon_x k_x}$$

EP: T=1

- no need to design linac "equipartitioned" with T=1
 - unnecessary constraint on design freedom
- just avoid $k_z / k_{xy} \sim 1$ exchange resonance
 - all "white" zones "good"
 - helps avoid exchange between ε_z and ε_{xy} (intensity dependent design uncertainty!)
 - avoids a danger of halo coupling

Beam halo coupling x-y \rightarrow z under $2k_z - 2k_x$ a possible risk - might be even more dangerous

2 examples "avoiding" E-exchange

Project X, P. Ostroumov. 2008

GSI

Another example: CSNS - DTL

General rule: minimize rms mismatch + lattice errors source of halo formation + beam loss

cont'd initial mismatch

Maximum halo little dependent on

- # simulation particles
- Strength of initial mismatch
- With transitions ~ 11 σ "safe"

Example: European Spallation Neutron Source (ESS) linac: 2.5 GeV 50 mA 5 MW (125 MW peak)

Conclusions

Extensively studied "resonant" mechanisms

- sources of emittance and halo growth
- beam dynamics in principle on solid ground
- in practice very transient situations
- In real linacs try to avoid them
 - often severe impact on design
 - sometimes compromise
- Random errors of linac structure "mix" resonant mechanisms with random effects
 - statistical studies (questions open)
 - more to understand theoretically
- New projects can benefit much from SNS + JPARC experience

