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Overview

� This lecture focuses on direct space charge 

� p or heavy ion high intensity linacs  at non- or weakly relativistic

energies 

� electrostatic interaction  – ignorable image charge effects

� several mechanisms also relevant to circular accelerators!

� limited relevance to space charge at injection of e- linacs

� Introduction to envelopes and space charge 

� Space charge resonances & instabilities 

� nearly all sources of emittance growth are of resonant nature (why?)

� discuss three main criteria for linac design

� Mismatch, errors, halo � Beam loss

� Summary



Overview on high power linacs
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C. Prior, HB2010
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Crucial issue:
� hands-on maintenance 

requires beam loss < 1W/m

� control of beam power loss at 

level 10-6 for MW beam power



Levels of description in linacs
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Envelope dynamics with linear space charge in 

linear optics

Multi-particle beam dynamics in idealized linear 

(nonlinear) optics with nonlinear space charge

Multi-particle beam dynamics in optics with 

random errors

design

verification of 
design 

beam halo 
and loss 

prediction

Analytical basis: 
Reiser’s book



Calculation of direct space charge force
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� bunches usually close to spherical (within factor of 2)

� � image charges usually negligible (pipe far away)

� forces Ex,y,z = linearly increasing with amplitudes in uniform bunch

� in non-uniform bunch non-linear Ex,y,z not negligible �major source of ε growth
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Sacherer's r.m.s envelope equations
and the equilibrium problem in 2d (infinitely long) beams

� Linear force (lattice + space charge) predicts rms emittances are
constant!

• with space charge exact self-consistent solution is 2D – KV

• equivalent to envelope equation (transversely uniform density, infinitely

long)

� for non-KV distribution the r.m.s envelope equations still hold – in 
good approximation! (Sacherer, ~1973)

• non-uniform density leads � nonlinear space charge force

• surprisingly r.m.s. envelope equations still very good
approximation - if emittances constant!

• applies ~ also to 3D case of "bunched beam" !
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Rms envelope equations

- valid under assumption of constant emittances -
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When are the rms emittances constant?

ε99%, ε99.99% equally important! 

numerous studies: 

Struckmeier and Reiser, Part. Accel. 14 (1984) ..............Li and Zhao, PRSTAB 17 (2014)



Linac beam dynamics is different!
- varying structures, focusing and tunes –
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Linac:
8 GeV 2 MW H- proton driver @ FNAL

Circular
tune diagram

Linac:
� single pass
� optics ~ linear
� space charge potential

− nonlinear
− periodically varying

� � resonances may exist
� often transient and not separable
� avoid by design – if possible

Circular:
� many turns
� optics  nonlinear effects matter
� space charge potential ~ a correction
� � many resonances exist

− avoid or compensate



Example of linac structure effect on beam dynamics
- varying structures and focusing –

concern: emittance increase, halo, beam loss & activation
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Proposal of a sc 8 GeV H-

proton driver for Fermilab 

(Project X)
P. Ostroumov (ANL), 2006



How to characterize space charge strength?

• lattice:  k0x, k0y, k0z describe lattice  

• reduced by space charge to kx, ky, kz         (k
2 ~ force)

• “tune depression” kx/k0x or kz/k0z relative importance of space 

charge;    

• “convention” in p linacs: kx/k0x < 0.7 ~ “space charge 

dominated”: effective force ~ reduced to half by space charge

• kx/k0x �0 strict space charge limit 

• =0 is “cold” beam with zero emittance

10



Idealized “demo lattice”  - for simplicity
periodic cells / RF gaps + well-separated resonant effects
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F/2 – O – D – O – F/2 with symmetric RF gaps



How to get more space charge dominated?
downwards k0xy-ramp – envelope model “demo lattice”
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� k0xy � 0  weaker 

focusing 

� � beam size grows 

� � more space charge 
dominated

� although absolute space 

charge force weaker!

k0xy weakened

kxy/k0xy more depressed !!

kxy

kz



Application to intrabeam stripping
serious issue in H- high power linacs ���� cure: expand beam!
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source: J. Galambos et al.

• 2010: SCL losses can be caused by Intra 

Beam Stripping of H- (Valeri Lebedev, 

FNAL) 

• By lowering SCL quads’ field gradients the 

losses were reduced to an acceptable level.

• Weaker focusing – more space charge 

dominated



Equilibrium - Resonance – Instability
- sources of emittance growth – any accelerator -
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deviation from stable equilibrium = „mismatch“
• small deviations � response bounded by initial value
• return to initial position if „damping“ exists – here particles
• � energy into „damping particles“ 

instability
small deviations � runaway

• no return to initial position
• � instability (also resonant)

resonant excitation
• increasing amplitude
• limited by de-tuning or loss

periodic kick

Beam: potential from magnets/RF and self-consistent electric field

all 3 involve resonant mechanisms – also in linac!  



Full particle-in-cell simulation
TRACEWIN code for linac design and verification
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• TRACEWIN: design and verification 
− http://irfu.cea.fr/Sacm/logiciels/.

• Grid-based Poisson solver “inside” bunch

• analytical continuation outside

− model halo particles accurately far away from core

• free boundary:

− ignore image charges – direct space charge dominant 

• # simulation particles ~ 107 

− worry about loss at level 10-6

• “error studies”: statistics with ~ 103 error seeded linacs

− � effect on beam loss

• limited spatial resolution 

− � noise needs to be checked



Full particle-in-cell (PIC) in “demo-lattice”
1000 downwards k0xy-ramp – demonstration of main resonant effects 
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Sources of emittance growth in linacs
in principle also relevant to circular accelerators

Non-resonant
Initial density profile mismatch 

• if starting with non-selfconsistent initial 
distribution

• evolves very fast: ~¼ plasma period (typically 
< 1 betatron period)
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“Classical” resonances
1. Structure resonances

• driven by periodically modulated space 
charge force � resonance condition

2. Anisotropy 

• driven by energy (emittance or "temperature") 
difference between degrees of freedom

• is a difference resonance - only exchange of 
emittances (rings: “Montague resonance”)Resonant instability by periodic 

structure
“90 degree” stopband envelope instability” 

• exponential growth from initial noise

• involves a resonance condition

• requires time (distance) to develop

Distinction instability – resonance 
sometimes confused 

Not all equally serious

Resonant halo formation
driven by rms mismatch � periodic force from 

space charge

• pushes particles into a halo

• also caused by random errors in magnet 

optics



Initial density profile mismatch – rms matched!
“un-matched” nonlinear field energy ���� emittance growth

• discovered in 1980's under "nonlinear field energy"

− 1D: Wangler et al., IEEE Trans. Nucl. Sci. NS·32, 2196 (1985)

− 3D: Hofmann and Struckmeier, Part. Accel. 81, 69 (1987) 

• always present at injection of a space charge dominated beam

• reason: space charge repulsion wants to flatten the beam the more the closer to space 

charge limit (k/k0�0) (self-consistent solution including non-parabolic space charge 
potential)

• “Plasma effect” known as “Debye shielding” – a non-resonant effect (only one here!)
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emittance dominated                    moderate extreme space charge limit k/k0�0

k/k0~1                            space charge         (vanishing emittance – “cold” beam)

matched density profiles (schematic – Gaussian distribution):
increasing space charge effect �profile flattening



Initial density effect cont’d
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Initial density effect cont’d

case 1
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~ good agreement!

phase space plot suggests a space 

charge octupole as driving force!

Analytical estimate in spherical 

approximation and assuming Ufinal=0:

k/k0 Uinitial ∆ε/∆ε/∆ε/∆ε/εεεεinitial

0.5 0.06 (WB) 3 %

0.25 “ 13 %

0.5 0.26 (Gauss) 12 %

0.25 “ 51 %

� Simulation example k0x,y=850   kx,y=430 

(k0z=850)

� Initial WB & after perfect matching with 

r.m.s. envelope equations



����1st criterion for high-current linac design:
"smooth real estate phase advance"

Unmatched density profile: 

� inevitable at injection: cannot match injection density profile 

to profile of self-potential  � self-matching with ε-growth

� occurs again, if sudden jump in focusing strength (phase 

advance per meter!) often required by different RF 

structures

� avoid: need to design linac lattice smoothly by inserting 

gradual transitions to allow adiabatic density adjustment 

("smooth real estate phase advance")
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Example ESS: “smooth” design
smooth real estate phase advance (deg/m)
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M. Eshraqi, HB2010

European Spallation Source

2.5 GeV 5 MW p linac



Second candidate (in “demo” lattice):

23

rm
s
 e

m
it
ta

n
c
e
s
  

 

90 degree stopbandk
0

x
,y

,z

symbolic nomenclature:

Linac Circular 
machine

Envelope 

instability

2kxy~1800 2Qxy~½

4th order 

resonance*)

4kxy~3600 4Qxy~1

Do we expect 

2nd order envelope instability 

or 4th order resonance?

Let experiment decide!

*) driven by space charge pseudo-octupole



Structure resonance / instability in periodic focusing
Mathieu equation: parametric resonance
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Avoid Mathieu instability at k0 = 1800

x’’ = (a - 2 q cos2φ)x =0

source: Reiser book

quasi-periodic with increasing amplitude

2:1 structure resonance : 
• particle motion is unstable due to structure 

of fundamental focusing cell

Resonance or instability?
• instability of central orbit (zero amplitude - perturbed)
• perturbing force ~ initial amplitude perturbation �

instability with exponential growth
• resonance: finite driving force already present by 

structure

structure = basic 

FODO cell

2
1

/ 0

=
=
=

m
n

kmn

change length 
at double 

freuquency
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Adding space charge – additional mechanism: 
„Envelope instability“ – a 2nd order structure instability

single particle k � 900 per focusing period

� perturbed envelope “k” ~ 1800 per period

� also 2:1 relationship 

� particles driven exponentially unstable by 

envelope perturbation
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Experiment on kx ∼ 900 stopband in 2008 at GSI-UNILAC 
first measurement of a space charge structure resonance in a linac! 

L. Groening et al., PRL, 2009                (in context of HIPPI campaign)

Main question:

2kx ∼ 1800 = envelope instability

4kx ∼ 3600 = fourth order resonance (driven by

space charge octupole in non-uniform beam)

both may occur! - experiment should decide

which one dominates!

16 cells!

4-th order!
evidence that dominance of 4th order 
resonance over 2nd order instability?



We found double response on 900 stopband
TRACEWIN 3D bunched beam simulation

to be published in PRL, Nov. 2015
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k0xy =950

kxy =800

Gaussian bunch

envelope instability at 2kx ∼ 1800

takes over and strongly 

exceeds 4-th order!

UNILAC-exp.

cells

density in x over 500 cells

cells

� agrees well with UNILAC-

experiment (~30% rms 

emittance growth over 16 cells)

� evidence that envelope 

instability can dominate over 

4th order in a longer system

4-th order 

resonance 

4kx ∼ 3600 



Complete stopbands show higher complexity
than could be concluded from UNILAC-experiment 
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kxy: 76                                                    90 

stopband > 50...100 cells 
=envelope instability

< 50 cells=4th order 
resonance

stop-band width ~ ∆∆∆∆k (space charge tune shift)

UNILAC

kxy/k0xy=0.85

k0xy=900
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For kox < 900 avoid: 
� envelope instability as well as 
� 4th order resonance

2nd criterion for linac design: k0x < 90< 90< 90< 900000

� Envelope instability 
• a real instability growing exponentially from small initial perturbation 

• no effect for kxy=900, requires k0xy>900  and kxy<900   � shifted from single 

particle resonance condition!

� Fourth order resonance
• driven by “space charge octupole”

• stopband partially overlapping with envelope instability

Might be observable (which one?) also in SIS 18 (12 Sup-Per) for Qy

� 3 � k0xy � 900 (possibly by bunch compression with Q0y=3.2)



Structural instability – resonance
in connection with space charge (only)
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Instabilities require:
� driving force (space charge multipole):

� absent initially – seeded only on noise level!

� grows with instability going on

� feedback leads to exponential growth

� normally resonance condition needed � resonant instability

� theoretically they exist in all orders – practically may be limited (mixing)

� no justification on usual resonance diagram

Resonances:
� for space charge multipoles present initially with non-uniform density

� multipole might grow further – self-consistent treatment - � a mix of 

resonance and instability  

� theoretically in all orders – mixing!



Higher order instabilities / resonances?
discussed in 2015 PRL paper 
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Found “third order instability”
� k0xy=900 (> 600 !) and kxy=420 (< 600 !) 
� analogous to 2nd order envelope 

instability
− 2 periods per lattice period 
− “1800” parametric 2:1 instability

� driven by space charge pseudo-
sextupole

− not a priori present in beam
− � grows with exponential growth 

from noise level
− essentially different from a 3rd

order 3Qxy~n (n =1,2, ...)  in a 
circular machine !

Linac Circular 
machine

3rd order

instability

3kxy~1800 3Qxy~½
�+ 1800



3rd order instability +  6th etc. resonances
< few % effect - negligible
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Waterbag

Gaussian

Much weaker for 

Gaussian distribution
− ignorable

− due to Landau 

damping?

x

x´

x´

x

6kxy~3600

8kxy~3600



Third candidate (in “demo-lattice”):
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coupling resonance
with exchange of 

transverse – longitudinal
emittances

k
0

x
,y

,z Linac Circular 
machine

Coupling 

resonance

2kxy-2kz~0 2Qx-2Qy~0

(“Montague”)
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Emittance exchange, how?

How can emittance exchange happen?

1. collisions  - too slow in linac                         � no

2. nonlinear forces between particles (FPU)?   � no

3. nonlinear potential

• due to magnet nonlinearities?                � no

• due to space charge modes?                 � yes!
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T=1: 
“Equipartitioned beam”:

x

z
y

3D: PIC-simulations

x

y

2D: Vlasov-theory + PIC

“envelope”

“sextupolar”

“octupolar”

density perturbations



Selfconsistent perturbation theory of space 
charge modes in anisotropic KV-beam
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Theory see:
Hofmann, Phys. Rev. E 57, p.56 (1998)

requires Vlasov-Poisson equations:

� analytical dispersion relations 

for orders n=2, 3, 4  



���� Stability chart as tool for linac design
TRACEWIN: plot tune footprint along linac - here “demo-lattice”
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stop-band width:
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Experimental verification at UNILAC (2009)

European HIPPI Project (2003-08) 
(High Intensity Pulsed Proton Injector) 
Strengthen basis for future high intensity linacs 
(CERN-SPL, FAIR p injector...)
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Experimental verification cont´d

- far from equipartition

- driven by large energy anisotropy εloσlo ~ 10 εtrσtr 

- observed in transverse plane (growth)

εεεεz/ε/ε/ε/εx =10

kz/kx

Experimental Evidence of Space Charge Driven Emittance Coupling

in High Intensity Linear Accelerators
L. Groening et al. PRL 103, 224801 (2009)



39

3rd criterion for linac design: avoid kz / kxy~1

• no need to design linac “equipartitioned” with T=1
− unnecessary constraint on design freedom

• just avoid kz / kxy~1 exchange resonance
− all “white” zones “good”

− helps avoid exchange between εz and εxy (intensity 

dependent design uncertainty!)

− avoids a danger of halo coupling

1T   :EP =
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Beam halo coupling x-y ���� z under 2kz – 2kxy~0
a possible risk - might be even more dangerous!  
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x-y-halo from 900 stopband (or from errors!)

� couples into longitudinal plane 

� risk loss out of bucket during acceleration

coupling resonance

90 degree 
stopband
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2 examples “avoiding” εεεε-exchange 
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Project X, P. Ostroumov. 2008

M. Eshraqi, HB2010



Another example: CSNS - DTL
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H.C. Liu, HB2014



General rule: minimize rms mismatch + lattice errors 
source of halo formation + beam loss
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2:1 resonance
core:particle mismatch- factor MM=1.3

• modest (12%) effect on 

rms emittance

• large (500%) effect on 

99.9% emittance (halo)

9
9

.9
%

 e
m

it
ta

n
c
e

s

rm
s
 e

m
it
ta

n
c
e

s

x

x´

x

x´cell 39 cell 261

2nd order resonance



44

cont’d initial mismatch

F. Gerigk, K. Bongardt and I. Hofmann, Linac02

Maximum halo little dependent on

• # simulation particles

• Strength of initial mismatch 

• With transitions ~ 11 σ “safe”



Example: European Spallation Neutron Source (ESS)  linac: 
2.5 GeV 50 mA 5 MW (125 MW peak)
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Error study: 
• 1000 linacs 105 particles

• loss tolerance <10-6 (< 1W/m) 

to avoid activation

• confidence level?

source: S. Peggs et al., ESS TDR 2012
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Conclusions

� Extensively studied "resonant" mechanisms
− sources of emittance and halo growth

− beam dynamics in principle on solid ground

− in practice very transient situations

� In real linacs try to avoid them
− often severe impact on design

− sometimes compromise

� Random errors of linac structure “mix” resonant mechanisms with 
random effects
− statistical studies (questions open)

− more to understand theoretically

� New projects can benefit much from SNS + JPARC experience


