

Measurements of particle production and their correlations at the LHC with the ATLAS detector

Soft QCD results

Elena Plotnikova

On behalf of the ATLAS Collaboration

JINR, Dubna, Russia

EDS Blois 2015: The 16th conference on Elastic and Diffractive scattering

Borgo, Corsica, France 2015

Overview

• The transverse polarization of Λ and $\overline{\Lambda}$ at $\sqrt{s} = 7$ TeV

PRD 91 (2015) 032004

• Two-particle Bose-Einstein correlations at $\sqrt{s} = 0.9$ and 7 TeV

arXiv:1502.07947, submitted to EPJC (February 2015)

• The differential production cross section of the $\phi(1020)$ meson at $\sqrt{s} = 7$ TeV

EPJC 74 (2014) 2895

The transverse polarization of Λ and $\overline{\Lambda}$ at $\sqrt{s} = 7 \text{ TeV}$

3

The transverse polarization of Λ and $\overline{\Lambda}$ at $\sqrt{s} = 7$ **TeV** *Motivation:*

- Large transverse polarization of A hyperons (up to 30%) was observed in inclusive pp and pn collisions by previous experiments, contrary to pQCD predictions of much smaller polarization
- On the other hand, the $\overline{\Lambda}$ polarization was measured to be consistent with zero by all previous experiments
- Some common features of the polarization P_T^{Λ} :

4

- \succ increases with p_T^{Λ} until it saturates at ~ 1 GeV
- > decreases as the Feynman variable $|x_F|^{\star}$ approaches zero
- > no strong dependence on the center-of-mass energy observed (tested up to $\sqrt{s} \approx 40 \text{ GeV}$)

No current model adequately describes all observations

Measurement in new kinematic regions could provide additional insight into mechanism responsible

ATLAS extends kinematic reach of past experiments to higher p_T^{Λ} and lower x_F

The Feynman $x_F = \frac{p_L}{p_L^{max}} = \frac{2p_L}{\sqrt{s}}$ is a scaling variable defined to describe inclusive hadronic interactions, where p_L^{max} is the maximum allowed p_L of a generated particle in the CM frame, based on the collision energy and particles' masses; $x_F \in [-1; 1]$ EDS Blois 2015 Soft QCD: Particle production and their correlations at ATLAS 29 June - 04 July, 2015

The transverse polarization of Λ and $\overline{\Lambda}$ at $\sqrt{s} = 7$ **TeV** *Introduction:*

The polarization is measured:

in the direction **normal** to the Λ production plane: $\vec{n} = \hat{p}_{beam} \times \vec{p}$

Only P_T^{Λ} can be non-zero, $P_L^{\Lambda} = 0$ (PC req.)

as a function of the p_T^{Λ} and $x_F = \frac{p_Z^{\Lambda}}{p_{beam}}$

ATLAS 2010 pp data $\sqrt{s} = 7$ TeV, 760 μb^{-1} (low pile-up conditions)

- $\Lambda \to p\pi^-$ and $\overline{\Lambda} \to \overline{p}\pi^+$ decays
 - The fiducial phase space: $0.8 < p_T < 15 \ GeV$ $5 \cdot 10^{-5} < x_F < 0.01$ (the fixed-target exps: 0.01 - 0.6) $0 |\eta| < 2.5$

 $\circ~$ The data are corrected for detector effects, etc.

The angular probability distribution is given by:

$$g(t; P_T^{\Lambda}) = \frac{1}{2}(1 + \alpha P_T^{\Lambda}t)$$

where $t \equiv \cos \theta^*$, $\alpha = 0.642 \pm 0.013$ is the world average value of the parity-violating decay asymmetry for the Λ (- α for the $\overline{\Lambda}$)

The transverse polarization of Λ and $\overline{\Lambda}$ at $\sqrt{s} = 7$ **TeV** Signal fraction extraction:

• Apply the selection criteria to reduce the combinatorial and physics $(K_s^0 \to \pi^+ \pi^-, \gamma \to e^+ e^-)$ backgrounds

6

032004

Phys. Rev. Bgrt20151

• Search for the long-lived, two-prong decays and construct the $Mass_{inv}$ distribution in the range $1100 < m_{p\pi} < 1135 MeV$

- Divide $Mass_{inv}$ range into the signal region (1105 < $m_{p\pi}$ < 1127 MeV) and the 2 sidebands
- Multi-parameter fits to extract the signal fraction f_i^{sig} separately in the 3 mass regions (i = 1, 2, 3) EDS Blois 2015 Soft QCD: Particle production and their correlations at ATLAS

29 June - 04 July, 2015

The transverse polarization of Λ and $\overline{\Lambda}$ at $\sqrt{s} = 7$ **TeV** *Polarization extraction:*

• The reconstructed decay angle distribution:

$$g_{det}(t'; P_T^{\Lambda}) \propto \frac{1}{2} \int_{-1}^{1} dt [(1 + \alpha P_T^{\Lambda} t) \varepsilon(t)] R(t', t)$$

where t' – the true value of $\cos \theta_{det}^*$, $\varepsilon(t)$ – the reconstruction efficiency, R(t', t) – the resolution function

Method of moments is used to extract the value of P_T^{Λ}

• It exploits the fact that, for any value of P_T^{Λ} , the first moment (expectation value) of the angular distribution can be expressed as <u>a linear combination</u> of the first moments of angular distributions with $P_T^{\Lambda} = 0$ and $P_T^{\Lambda} = 1$

$$E(P_T^{\Lambda}) = \int_{-1}^{1} dt' t' g_{det}(t'; P_T^{\Lambda}) = E(0) + [E(1) - E(0)]P_T^{\Lambda}$$

E(0), E(1) estimated using MC simulation as averages of the reconstructed decay angle values for samples with P_T^{Λ} set to 0 and 1

The transverse polarization of Λ and $\overline{\Lambda}$ at $\sqrt{s} = 7$ TeV **Background contribution:**

- To correct for the BGD contribution, the first moments are calculated separately in the signal and sideband regions
- The first moment of the BGD angular distribution, E_{bkg} is assumed independent of $m_{p\pi}$ verified with MC

The expected first moment in each of the 3 regions:

 $E_{i}^{exp}(P_{T}^{\Lambda}, E_{bka}) = f_{i}^{sig} \{ E_{i}^{MC}(0) + [E_{i}^{MC}(1) - E_{i}^{MC}(0)] P_{T}^{\Lambda} \} + (1 - f_{i}^{sig}) E_{bkg}$ where $E_i^{MC}(\emptyset)$, $E_i^{MC}(1)$ estimated from MC 0.02**⊢ ATLAS** First moment f_i^{sig} – the signal fractions from fit to $m_{p\pi}$ $0.015 \vdash L = 760 \,\mu b^{-1}$ 0.005 The values of P_T^{Λ} and E_{bkq} are extracted in a least-squares fit: -0.005

$$\chi^2(P_T^{\Lambda}, E_{bkg}) = \sum_{i=1}^3 \frac{[E_i - E_i^{exp}(P_T^{\Lambda}, E_{bkg})]}{\sigma_{E_i}^2}$$

The transverse polarization of Λ and $\overline{\Lambda}$ at $\sqrt{s} = 7$ **TeV** *Main results:*

- In p_T and x_F bins, the polarization is found to be < 2% and is consistent with zero in all bins no significant dependence on p_T or x_F is observed
- The average transverse polarization of Λ and $\overline{\Lambda}$ in the full fiducial phase space is consistent with zero:

 $P_T^{\Lambda} = -0.010 \pm 0.005_{stat} \pm 0.004_{syst}$

$$P_T^{\overline{\Lambda}} = -0.002 \pm 0.006_{stat} \pm 0.004_{syst}$$

Soft QCD: Particle production and their correlations at ATLAS

The transverse polarization of Λ and $\overline{\Lambda}$ at $\sqrt{s} = 7$ **TeV** *Comparison with the previous experiments:*

The ATLAS result for:

10

032004

120151

Phys. Rev. Dgn

- P_T^{Λ} is consistent with an extrapolation of fits from previous measurements to low x_F , which suggests that the magnitude of the polarization should decrease as x_F approaches zero
- P_T^{Λ} is consistent with zero as by all the previous experiments

- The measured P_T^A values depend on the reconstruction efficiency within the fiducial phase space, $\epsilon(x_F, p_T)$, and on the differential polarization $P_T^A(x_F, p_T)$
- The efficiency maps of reconstructed Λ and $\overline{\Lambda}$ decays are provided in the HEPDATA database for comparisons

EDS Blois 2015

Two-particle Bose-Einstein correlations at $\sqrt{s} = 0.9$ and 7 TeV

11

Bose-Einstein correlations at $\sqrt{s} = 0.9$ and 7 TeV *Motivation:*

- Bose-Einstein correlations (BEC) correlations between two identical bosons (consequence of the symmetry of identical bosons wave function)
- BEC effect corresponds to an enhancement in two identical boson correlation function when the two particles are near in momentum space
- BEC is a sensitive probe of the space-time geometry of the hadronization region

 allows the determination of the size and the shape of the source from which
 particles are emitted
 - Studies of the dependence of BEC on particle multiplicity and transverse momentum are of special interest as help to understand the multiparticle production mechanism

Bose-Einstein correlations at $\sqrt{s} = 0.9$ **and 7 TeV** *Two-particle correlation function:*

• $C_2(q) = \frac{P(p_1, p_2)}{P(p_1)P(p_2)}$

where $P(p_1, p_2)$ – probability to observe two particles with momenta p_1 and p_2 , $P(p_1)$, $P(p_2)$ – probability to observe one particle with momenta p_1 or p_2

The density function is parameterized in terms of the Lorentz invariant four-momentum difference squared of the particles pair:

 $Q^2 = -(p_1 - p_2)^2$

$C_2(Q) = C_0[1 + \Omega(\lambda, QR)](1 + \varepsilon Q)$

where C_0 – a normalization factor

- ε accounts for the long-range momentum correlations
- *R* the effective radius of the source size
- λ the strength parameter (the incoherence or chaoticity factor):
 - $\lambda = 0$ (= 1) for purely coherent (chaotic) sources

EDS Blois 2015

Bose-Einstein correlations at $\sqrt{s} = 0.9$ and 7 TeV *Constructed correlation functions:*

- The $C_2(Q)$ correlation function is a ratio of:
 - the like-sign (LS) particle (track) pairs Q distribution the signal distribution $N^{ls}(Q)$ with BEC and
 - the particle (track) pairs Q distribution the reference distribution $N^{ref}(Q)$ without BEC
- The experimentally constructed:
 - **The** $C_2(Q)$ correlation function:

$$C_2(Q) = \frac{N^{ls}(Q)}{N^{ref}(Q)}$$

The double ratio $R_2(Q)$ correlation function:

$$R_2(\boldsymbol{Q}) = \frac{C_2(\boldsymbol{Q})}{C_2^{MC}(\boldsymbol{Q})}$$

The "natural choice" for $N^{ref}(Q)$ – the unlike-sign charged particle pairs of the event (UCP). The other used reference samples – mixed-event, opposite-hemisphere pairs, rotated track technique. The $C_2^{MC}(Q)$ is used to correct $N^{ref}(Q)$ to minimize effect of resonances and doesn't include BEC effects.

Pdrameterizations:

- > The Goldhaber spherical source model of a static Gaussian source in the Plane-Wave approach: $\Omega = \lambda e^{-R^2 Q^2}$
- > The exponential parameterization of a static source assumes a radial Lorentzian distribution of the source: $\Omega = \lambda e^{-RQ}$
 - o <u>a better description of the data at small Q values</u>
- > The Gaussian and Exponential forms in the Quantum Optics model were studied too.

EDS Blois 2015

Soft QCD: Particle production and their correlations at ATLAS

Bose-Einstein correlations at $\sqrt{s} = 0.9$ and 7 TeV *Double ratio* $R_2(Q)$ *correlation functions:*

ATLAS pp 2009 data $\sqrt{s} = 0.9$ TeV, 7 μb^{-1} ; 2010 data $\sqrt{s} = 7$ TeV and 7 TeV HM, 190 μb^{-1} and 12.4 nb^{-1} , respectively. $p_T \ge 100 \text{ MeV}, |\eta| < 2.5$; 1 PV with ≥ 2 tracks, 7 TeV HM - 1 PV with ≥ 108 tracks Statistics of selected events: 3.6×10^5 , 1×10^7 , 1.8×10^4 at 0.9, 7 TeV and 7 TeV HM, respectively The data are corrected for detector effects, such as resolution and inefficiencies, coulomb interactions, etc.

A clear signal of BEC is observed in the region of small 4-momentum difference Q

Q region 0.02 - 2 GeV

The bump at $0.5 \le Q \le 0.9$ GeV is due to an overestimation in the MC simulation for ρ -meson (more $\rho \to \pi^+\pi^-$)

EDS Blois 2015

15

9. C

Bose-Einste	ein correlati	ons at \sqrt{s}	= 0.	9 and 7 T	eV	
6 Full pha	se-space res	ults:	ATLAS √s ATLAS √s	s = 7 TeV HMT s = 7 TeV		
• The results of BEC pare the UCP reference sample i	ameters for Exponent used (total uncertaint	ial fits of $R_2(Q)$, ies):	ATLAS √s	s = 0.9 TeV		CMS √s=0.9 TeV MS √s=2.36 TeV
$\lambda = 0.74 \pm 0.1, \qquad R = 1.8$	$83 \pm 0.25 fm at \sqrt{s}$	$= 0.9 TeV for n_{cl}$	_ ≥ 2	▶+₩+1 ▶+₩+1	ALICE ALICE √s	√s=0.9 TeV, mix =0.9 TeV, rotated NA22
$\lambda = 0.71 \pm 0.07, \qquad R = 2.$	$06 \pm 0.22 fm$ at \sqrt{s}	$=$ 7 <i>TeV for</i> $n_{ch} \ge$	2			MARKII J/ψ o.s. MARKII J/ψ mix MARKII γ/γ o.s.
$\lambda = 0.52 \pm 0.06, R = 2.3$	$36 \pm 0.30 fm$ at \sqrt{s}	$=$ 7 TeV for $n_{ch} \ge$	150		MARKII qq √s MARKII qq √s MARKII qq MARKII qq	=4.1-6.7 GeV o.s. =4.1-6.7 GeV mix \s=29 GeV o.s. \s=29 GeV mix
Comparison with pre Most of the previous experim	vious measurem ments provided R with a	Cents: Gaussian fit.			F ∎1	UA1 NA27 TASSO AMY o.s. AMY mix DELPHI OPAL L3 π [±]
The comparison to the Expo	onential fit can be done u	sing the scale		•••••		ALEPH o.s. ALEPH mix
factor $\sqrt{\pi}$:	Energy [TeV]	R [fm]		· · · · · · · · · · · · · · · · · · ·		ZEUS BEBC EMC o.s.
$\mathbf{R}^{(G)} = \mathbf{R}^{(E)} / -$	0.9	1.03 ± 0.14		+ ₩-1 ## + _1 - ₩+1		EMC mix E665 BBCNC o.s.
$/\sqrt{\pi}$	7	1.16 ± 0.12				BBCNC mix NOMAD
N	7 (HM)	1.33 ± 0.17	0.2	0.4 0.6 0.8 1	1.2 1.4 1.6	1.8 2 r (fm)

arXiv:1502.07947. subm. to Eur. Phys. 9. C

29 June - 04 July, 2015

Bose-Einstein correlations at $\sqrt{s} = 0.9$ **and 7 TeV** *Parameters \lambda and R vs. particle multiplicity:*

The error bars – quadratic sum of the statistical and the systematic uncertainties The result of the $p_0 \sqrt[3]{n_{ch}}$ fit for $n_{ch} \le 55$: > 0.9 TeV: $p_0 = 0.64 \pm 0.07$ [fm] > 7 TeV: $p_0 = 0.63 \pm 0.05$ [fm] The result of the Constant for $n_{ch} \ge 55$:

> 7 TeV MB + HM: $p_0 = 2.28 \pm 0.32$ [fm]

The <u>saturation of R</u> for high-multiplicity particles (up to ≈ 240) is observed <u>for the first</u> <u>time</u> – predicted by the *Pomeron-based model* (due to highly overlapping of colliding protons).

Within the uncertainties λ and R are energy-independent.

Soft QCD: Particle production and their correlations at ATLAS

 \mathcal{O}

Bose-Einstein correlations at $\sqrt{s} = 0.9$ and 7 TeV *Parameters \lambda and R vs. track pair k_T:*

The average transverse momentum of the particle pairs:

$$k_T = \frac{\left|\vec{p}_{T,1} + \vec{p}_{T,2}\right|}{2}$$

- Within the uncertainties λ and R are energy-independent
- Comparison with measurements by the STAR and E735 experiments – in good agreement
- The error bars quadratic sum of the statistical and the systematic uncertainties
- R decreases with k_T and exhibits an increase with increasing multiplicity

EDS Blois 2015

 \mathcal{O}

9

The differential production cross section of the $\phi(1020)$ meson at $\sqrt{s} = 7$ TeV

$\phi(1020)$ differential production cross section at $\sqrt{s} = 7$ TeV 20 *Motivation:* Particle identification:

- Measurements of the φ(1020)-meson probe strangeness production at a soft process scale Q ~ 1 GeV, which is sensitive to s-quark and low-x gluon densities
- Also can constrains fragmentation models

ATLAS 2010 pp data $\sqrt{s} = 7$ TeV, 383 μb^{-1} (low pile-up conditions)

- $\phi \to K^+ K^-$ decays
- K^{\pm} are identified by $\frac{dE}{dx}$ in the Pixel Detector
 - The fiducial phase space:
 - $0 500 < p_{T,\phi} < 1200 MeV$
 - $\circ |y_{\phi}| < 0.8$

Eur.

- $\circ \ p_{T,K^{\pm}} > 230 \, MeV$
- $\circ p_{K^{\pm}} < 800 \, MeV$
- The data are corrected for detector effects, etc.

The truncated mean for the energy loss per track as a function of signed momentum for tracks. The energy lost bands of pions, kaons and protons

$\phi(1020)$ differential production cross section at $\sqrt{s} = 7$ TeV 21 Signal extraction:

EDS Blois 2015

- Apply the selection criteria to reduce the combinatorial background such as:
 - o a particle identification (PID) requirement
 - \circ kaon candidates with

 $P_{\pi} < 0.1$ and $P_K > 0.84$ conditions

- $\phi(1020)$ candidates with $1000 < m_{K^+K^-} < 1060 \, MeV$, etc.
- The fiducial region is divided into $p_{T,\phi}$ and $|y_{\phi}|$ bins
- The signal shape is described by a relativistic Breit-Wigner function:

$$f_{RBW}(m;m_0,\Gamma_0) = \frac{m^2}{(m^2 - m_0^2)^2 + m_0^2 \Gamma^2(m)}$$

where the mass-dependent width:

$$\Gamma(m) = \Gamma_0 \left[\frac{m^2 - 4m_K^2}{m_0^2 - 4m_K^2} \right]^{3/2}$$

where $m_0 = 1019.45 \, MeV$ – the fixed $\phi(1020)$ mass Γ_0 – the natural width of 4.26 MeV m_K – the charged kaon mass

$\phi(1020)$ differential production cross section at $\sqrt{s} = 7$ TeV

Cross section:

• The cross section σ_{bin}^i in bin *i*: $\sigma_{bin}^i = \frac{N_i}{f}$

where \mathcal{L} – the integrated luminosity

 N_i – the number of efficiency-corrected recons. $\phi \to K^+K^-$ candidates in bin *i*

The fiducial cross section:

EDS Blois 2015

22

Eur.

 $\sigma \cdot Br(\phi \rightarrow K^+K^-) = 570 \pm 8_{stat} \pm 66_{syst} \pm 20_{lumi} \, \mu b$

 $\frac{d\sigma}{dp_T}$ extrapolated to the full $|y_{\phi}| < 0.5$ fiducial volume agrees with **ALICE result** (*to qualitative*):

• The $\phi(1020)$ differential production cross section as functions of $p_{T,\varphi}$ and $|y_{\varphi}|$ – large spread of predictions even between different tunes of Pythia6 MC:

23 Summary

The Λ and $\overline{\Lambda}$ hyperon transverse polarization:

- > ATLAS measurement of the Λ transverse polarization is consistent with zero in agreement with an extrapolation the previous results to the low Feynman-*x*, which suggest that the polarization should decrease as the Feynman-*x* approaches zero
- $\overline{\Lambda}$ transverse polarization is also observed to be zero, consistent with previous experiments

Bose-Einstein correlations:

Multiplicity dependence of the BEC was investigated up to very high multiplicities (up to ≈ 240). The saturation effect in multiplicity dependence of the extracted BEC radius was observed at level $R = 2.28 \pm 0.32$ fm

The $\phi(1020)$ differential production cross section:

This measurement can provide useful input for turning and development of phenomenological models in order to improve MC generators

Thank you very much for your attention

24