Review of diffraction at the LHC

Robert Ciesielski
(The Rockefeller University)

EDS-Blois 2015, the 16th Conference on Elastic and Diffractive Scattering
29 June – 4 July, 2015, Borgo, Corsica
Outline

Diffraction at the LHC

- Inclusive measurements
- Hard diffraction
- Exclusive processes

Will only minimally cover HERA results, as they will be discussed on Thursday by:
 - Alice Valcarova - Hard diffraction at HERA
 - Marta Ruspa - Exclusive processes at HERA
Motivation

- Measure fundamental quantities in HEP: total, elastic, diffractive cross sections
- Understand mechanism of diffractive processes
- Study interplay between soft and hard physics
 - Test phenomenological models in soft regime
 - Test pQCD in hard regime
- Search for new phenomena
 - BFKL dynamics
 - Saturation
 - Exotic QCD states, e.g. glueballs
 - BSM physics
Main processes contributing to the total pp cross section

Non-diffractive

\[pp \rightarrow X \] (exponentially-suppressed rapidity gap)

Elastic

\[pp \rightarrow pp \]

Single dissociation (SD)

\[pp \rightarrow Xp, \ pp \rightarrow pY \]

Double dissociation (DD),

\[pp \rightarrow XY \]

or double-Pomeron exchange (DPE)

Central diffraction (CD)

\[pp \rightarrow pXp \]

Diffractive processes (SD, DD, CD) – about 20-30% of total-inelastic cross section. Large rapidity gap (LRG) present in the final state.
Elastic scattering @7 TeV

Proton tagging at z=±220 m (TOTEM RP) and z=±240 m (ATLAS-ALFA)

EPL 95 (2011) 41001, EPL 101 (2013) 21001

\[
\frac{d\sigma_{el}}{dt} = \left. \frac{d\sigma_{el}}{dt} \right|_{t=0} e^{-B|t|}
\]

ATLAS: \(B = 19.7 \pm 0.3 \text{ GeV}^{-2} \)
TOTEM: \(B = 19.9 \pm 0.3 \text{ GeV}^{-2} \)

NPB 889 (2014) 486

Forward peak, exponential in |t|
Power low dependence at higher |t|
Dip position (\(R_p^2/4 \)) moves to lower |t| with energy
Optical theorem and total pp cross section

From elastic observables:

\[\sigma_{\text{tot}}^2 = \frac{1}{L} \frac{16\pi}{1 + \rho^2} \left| \frac{dN_{\text{el}}}{dt} \right|_{t \to 0} \]

\[\rho = \frac{\Re(f_{1}(t))}{\Im(f_{1}(t))} \bigg|_{t \to 0} = 0.14 \]

\(\rho \) independent:

\[\sigma_{\text{tot}} = \frac{1}{L} (N_{\text{el}} + N_{\text{inel}}) \]

Luminosity independent:

\[\sigma_{\text{tot}} = \frac{16\pi}{1 + \rho^2} \frac{dN_{\text{el}}/dt}{N_{\text{el}} + N_{\text{inel}}} \]

All three methods in agreement.

For an evolution of theory predictions before and after the LHC data, see Errol Gotsman's talk at DIFFRACTION 2014
Elastic at low and very low $|t|$ - TOTEM

- High statistics dataset ($\beta^*=90\text{m, 2012}$), 7 Mevt, $0.027 \text{ GeV}^2 < |t| < 0.2 \text{ GeV}^2$ (Coulomb effects negligible)

Relative deviation from exponential fit with

$$B(t) = b_0$$
$$B(t) = b_0 + b_1 t$$
$$B(t) = b_0 + b_1 t + b_2 t^2$$

Pure exponential dependence excluded at 7.2 s significance.

- Very-low $|t|$ dataset ($\beta^*=1000\text{m, 2012}$), $|t| > 6 \times 10^{-4} \text{ GeV}^2$

Constrain models of Coulomb-nuclear interference (nuclear phase Ψ, B(t))

See e.g. Mario Deile at DIS 2015

R. Ciesielski, Review of diffraction
Diffractive results

Kinematic limit @7 TeV: $\eta = \pm 0.5 \times \log(s/m^2) \approx \pm 10$

Detector coverage:

$M_x (SD)$: $\sim 3.4 \sim 12$. ~ 1100 GeV

CMS, ATLAS central detector

TOTEM

R. Ciesielski, Review of diffraction
Diffractive events at high values of $\Delta \eta^F$
For $\Delta \eta^F > 3$ measured ~ 1 mb per unit of $\Delta \eta^F$
Test of diffraction models
No SD/DD separation possible

Similar results from CMS.
In addition, CMS uses CASTOR calorimeter (-6.6<η<-5.2) to separate SD/DD for events with $\Delta \eta^F > 4$.

R. Ciesielski, Review of diffraction
Diffractive results from CMS

For $12 < M_X < 394$ GeV

- Forward rapididity gap
- CASTOR ($-6.6 < \eta < -5.2$)
- $3.2 < M_X < 12$ GeV

Test of diffraction (and hadronization) models

PYTHIA8-MBR describes all aspects of the data

Details of PYTHIA8-MBR model in K. Goulianos talk

CMS-FSQ-12-005, arXiv:1503.08689
SD cross section from CMS

From background-subtracted (with small uncertainties) CASTOR-tag sample:

\[
\sigma^{SD_{vis}} = 4.06 \pm 0.04 \left(\text{stat} \right)^{+0.69}_{-0.63} \left(\text{syst} \right) \text{mb} \quad -5.5 < \log_{10} \xi_X < -2.5 \quad (12 < M_X < 394 \text{ GeV})
\]

Extrapolated to the not observed region with PYTHIA8-MBR:

(from yellow to khaki on plots below)

\[
\sigma^{SD} = 8.84 \pm 0.08 \left(\text{stat} \right)^{+1.49}_{-1.38} \left(\text{syst} \right)^{+1.17}_{-0.37} \left(\text{extr} \right) \text{mb} \quad \xi_X(Y) < 0.05
\]

Large model variations, PYTHIA8-MBR describes the data in the visible region

used in EPJC 73 (2013) 2456
SD cross section from TOTEM

Proton tag + combinations of T1 (3.1 < |η| < 4.7) and T2 (5.3 < |η| < 6.5) detectors to select different Mx bins

Integrated SD cross section @ 7 TeV

\[
\sigma_{SD} = 6.5 \pm 1.3 \text{ mb} \\
(3.4 < M_{SD} < 1100 \text{ GeV})
\]

See e.g. Mirko Berretti talk at DIFFRACTION 2014
DD cross section from CMS and TOTEM

CMS-FSQ-12-005, arXiv:1503.08689

DD cross section from CMS and TOTEM

forward gap with CASTOR tag

\[
\sigma_{DD vis}^{\text{CASTOR}} = 1.06 \pm 0.02 \text{(stat)} \pm 0.12 \text{(syst)} \text{mb}
\]

central gap

\[
\sigma_{DD vis}^{\text{CG}} = 0.56 \pm 0.01 \text{(stat)} + 0.15 \text{(syst)} \text{mb}
\]

and

extrapolated to \(\Delta\eta > 3\) with PYTHIA8-MBR:

\[
\sigma^{DD} = 5.17 \pm 0.08 \text{(stat)} + 0.55 \text{(syst)} + 1.62 \text{(extr)} \text{mb}
\]

TOTEM (T2 on both sides, no T1, 3.4 < M_{X/Y} < 8 GeV)

\[
\sigma_{DD(4.7<|\eta_{\min}|<6.5)} = 120 \pm 25 \mu\text{b}
\]

R. Ciesielski, Review of diffraction
SD and DD cross sections weakly rising with energy

TOTEM SD:
6.5 ± 1.3 mb – SD cross section for 3.4 < M_x < 1.1 GeV

+ 2.62 ± 2.17 mb - T2-invisible cross section for M_x < 3.4 GeV (SD dominated)

9.12 ± 2.53 mb for ξ<0.025 (extrapolation to ξ<0.05 compensated by DD in T2-invisible cross section)

in agreement with extrapolated CMS SD cross section.
Central and forward $dN_{ch}/d\eta$

The first common CMS+TOTEM runs (2012, @8 TeV) and publication
Trigger based on activity in T2

Multiplicity of SD-enhanced events significantly smaller than inclusive ones
No prediction able to describe $dN_{ch}/d\eta$ in the entire η range
Data can help constrain modelling of hadronic final state and diffractive scattering

Direct measurements of charged multiplicity spectra in proton dissociation systems?
Double- and Multi-gaps at the LHC?

Will we measure them, as CDF did?
Fine-tuning of hadronization models, multiplicity spectra, etc.
Hard diffraction at LHC
Diffractive dijets

Factorization breaking: NLO predictions based on HERA diffractive PDFs overestimate Tevatron diffractive dijet cross sections by ~0(10). Suppression factor $|S|^2$ due to rescattering effects.

Inclusive dijet cross section in 3 bins of ξ

Data/MC in the lowest ξ bin (0.0003< ξ<0.002):
- 0.21 ±0.07 (LO - POMPYT POMWIG)
- 0.14 ±0.05 (NLO - POWHEG)

After proton-dissociation correction:
- 0.12 ±0.05 (LO)
- 0.08 ±0.04 (NLO).

Combined CMS+TOTEM analysis in progress

Proton tagging with TOTEM Roman Pots
No ND and p-diss background
Demonstrated good control of the background (PU and beam related)
Measurement of the t dependence of the cross section

Plans for other measurements with p-tag @13 TeV (diffractive dijets, W, Z, J/psi)

CMS-PAS-FSQ-14-001, TOTEM-NOTE-2014-02
Jet-gap-jet events

Jets separated by a large rapidity gap, color singlet exchange (CSE)
BFKL dynamics, rescattering processes
Events with gaps ~1% at Tevatron (CDF, D0)

Charged multiplicity for $|\eta|<1$:
Clear excess of gap events over PYTHIA6 prediction (LO DGLAP),
described by HERWIG (LL-BFKL, Mueller-Tang model)

D0 data, compared to Enberg, Ingelman, Motyka model (NLL BFKL + MPI+SCI)
PLB 524 (2002) 273
Jet-gap-jet events

Gap/CSE fraction := ratio of events in the lowest multiplicity bins to all events
Modest increase with jet energy and rapidity separation $\Delta \eta$

A factor ~ 2 suppression w.r.t. to 1.8 TeV data
observed earlier: 2.5 ± 0.9 (D0) and 3.4 ± 1.2 (CDF)
decrease with $\sqrt{s} = 0.63 \rightarrow 1.8$ TeV

Preliminary predictions of Ekstedt, Enberg, Ingelman, Motyka with two models for SCI - color exchange between partons (old SCI) or strings (new SCI): good description of gap fractions vs $\Delta \eta$
CEP in pp collisions

QED

Photo production

Double pomeron exchange

R. Ciesielski, Review of diffraction
π⁺π⁻ production in DPE

DPE (no valence quarks, spin selector) - production of isoscalars with $J^{PC} = 0^{++}, 2^{++}, ...$, including glueballs

STAR @200 GeV: pions with p-tagging
Resonance structure similar to that seen at ISR @63 GeV
$f_0(600)$, shoulder from $f_0(980)$ interference,
some structure around 1.2-1.6 GeV

Increased statistics (30-40 times) expected from 2015 runs

See e.g. Jacek Turnau at DIS 2014

CDF @0.9 and 1.96 TeV: dipions and no other activity in $|\eta| > 5.9$
Resonance structure for $M(\pi\pi) > 1$ GeV
$f_2(1270)$, shoulder from $f_0(1370)$ interference, some structure around 1.4-2.4 GeV,
data falls monotonically above 2.4 GeV

The cross section ratio $R(0.9:1.96) = 1.28$ for $1 < M(\pi\pi) < 2$ GeV
consistent with Regge phenomenology ($\sim 1/\ln(s)$)

At LHC: ongoing CMS+TOTEM and ALICE analyses

R. Ciesielski, Review of diffraction
Exclusive production of charmonium pairs in DPE

First observation of the central exclusive production of $J/\Psi + J/\Psi$ and $J/\Psi + \Psi(2S)$ pairs.

Four tracks, at least 3 muons

$57 J/\Psi + J/\Psi$ candidates
$7 J/\Psi + \Psi(2S)$ candidates

Cross section for elastic $J/\Psi + J/\Psi$ production: 24 ± 9 pb
In agreement with predictions of Harland-Lang, Khoze, Ryskin, Stirling: 8 pb
(large theoretical uncertainties, factor of 2-3)
Reminder: $\gamma p \rightarrow V p$ at HERA

Harvest of VM results at HERA
Observed transition from soft to hard with a hard scale (M_V, Q^2, t)
In the hard regime, validated pQCD description

$\sigma \sim [xg(x, \mu^2)]^2$ Sensitive to gluon saturation at very low x (high W)

W_5, $\delta=0.2$
Regge with soft IP

W_5, $\delta=0.7-1.2$
Gluons at low-x ($W^2=1/x$)

V mass provides hard scale
Reminder: $\gamma p \rightarrow Vp$ at HERA

Exclusive production of J/Ψ
(photoproduction and DIS)

Cross sections as a function of W in bins of Q^2
compared to pQCD predictions (MRT model)
with different gluon PDFs.

Sensitivity to gluon PDFs at low x!

HERA data used by MNRT group to extract gluon PDFs and provide predictions for the LHC
Photoproduction of J/Ψ and $\Psi(2S)$ in pp

Two muons with $p_T>400$ MeV and no other activity
Inelastic background subtracted by fitting p_T^2 spectra
For J/Ψ: feed down from X_c and $\Psi(2S)$ - 8% and 2.5%

Extracted b slopes of the exponential p_T^2 dependence
Measured cross section as a function of VM rapidity

Comparison to predictions of JMRT model
NLO in better agreement

Data also described by saturation models

LHCb sensitivity $\propto 10^{-5}$
Photoproduction of J/Ψ and $\Psi(2S)$ in pp

Comparison to HERA data

Emitter/target ambiguity

Assume $\sigma(W)$ and extract $\sigma(W)$ according to:

$$\sigma_{J/\psi p}(W) = 81(W/90\text{GeV})^{0.67}$$

$$\frac{d\sigma}{dy}_{pp\rightarrow pJ/\psi p} = r_+ k_+ \frac{dn}{dk_+} \sigma_{J/\psi p}(W^+) + r_- k_- \frac{dn}{dk_-} \sigma_{J/\psi p}(W^-)$$

LHCb data in agreement with the extrapolation of the fit to the H1 data.
Photoproduction of J/Ψ in p-Pb

Pb: rich source of photons (flux~Z^2), negligible Xc background

W^- from Pb-p, W^+ from p-Pb

ALICE data compared to HERA and LHCb data, and to theory predictions

The result of a fit with $\sigma \propto W_{\gamma p}^\delta$

consistent with HERA measurements

<table>
<thead>
<tr>
<th></th>
<th>ZEUS</th>
<th>H1</th>
<th>ALICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>0.69 ± 0.04</td>
<td>0.67 ± 0.03</td>
<td>0.68 ± 0.06</td>
</tr>
</tbody>
</table>

LHCb solutions consistent with ALICE power-law fit

Data described by the JMRT model at LO and NLO, and saturation models
Photoproduction of Y in pp

Two muons with $p_T > 400$ MeV, $2<|\eta|<4.5$ and no other activity
Inelastic background subtracted by fitting p_T^2 spectra
Feed down from $X_b(m_P) \rightarrow Y(n_S)\gamma$ - 20-50%

Measure cross section as a function of VM rapidity

Comparison to predictions of JMRT model.
NLO in better agreement

W+ solution dominant
W- neglected

Run-2 @LHCb: HERSCHEL high rapidity shower counters to reduce inelastic background.
Photoproduction of J/Ψ in Pb-Pb collisions

Is the nucleus gluon field equivalent to those of A nucleons? → hunting for shadowing

\[\frac{d\sigma_{\gamma A \rightarrow J/\Psi A}}{dt} \bigg|_{t=0} = \xi_{J/\Psi} \left(\frac{16\pi^3\alpha_s^2\Gamma_{l+l^-}}{3\alpha M_{J/\Psi}^5} \right) \left[xG_A(x, \mu^2) \right]^2 \]

Direct evidence for shadowing

Data can improve ~100% uncertainty

Exclusive $\gamma\gamma \rightarrow e^+e^-$ production

QED prediction for exclusive production has an uncertainty of $\sim 2\%$

Suppression due to rescattering effects expected in pp collisions

Fits to dielectron and dimuon acoplanarity spectra with elastic and p-dissociation templates.
Templates from HERWIG++ (cross section from Equivalent Photon Approximation (EPA) = LO QED).

\[
\begin{align*}
R_{\gamma\gamma \rightarrow e^+e^-}^{\text{excl.}} &= 0.863 \pm 0.070 \text{ (stat.)} \\
R_{\gamma\gamma \rightarrow e^+e^-}^{\text{s-diss.}} &= 0.759 \pm 0.080 \text{ (stat.)} \\
R_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{excl.}} &= 0.791 \pm 0.041 \text{ (stat.)} \\
R_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{s-diss.}} &= 0.762 \pm 0.049 \text{ (stat.)}
\end{align*}
\]

A suppression of about 20\% is measured

In agreement with predictions of Dyndal and L. Schoeffel

Similar observation by CMS: $R_{\gamma\gamma \rightarrow e^+e^-}^{\text{excl.}} = 0.91 \pm 0.03$ and $R_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{s-diss.}} = 0.72 \pm 0.02$ for $p_T^{\mu} > 20 \text{ GeV}, |\eta^\mu| < 2.4$

PLB 741 (2015) 66

JHEP 07 (2013) 116
Exclusive $\gamma\gamma \rightarrow WW$ production, limits on aQGC

Update of 7 TeV ($L=5 \text{ fb}^{-1}$) analysis with $L=20 \text{ fb}^{-1} @ 8 \text{ TeV}$

Effective Lagrangian with two additional dimension 6 terms:

$$\mathcal{L}_6^0 = \frac{e^2}{16 \cos^2 \Theta_W} \frac{a_0^W}{\Lambda^2} F_{\mu \nu} F^{\mu \nu} W^+ W^- - \frac{e^2}{16 \cos^2 \Theta_W} \frac{a_0^Z}{\Lambda^2} F_{\mu \nu} F^{\mu \nu} Z^\alpha Z^\alpha$$

$$\mathcal{L}_6^C = \frac{-e^2}{16 \cos^2 \Theta_W} \frac{a_C^W}{\Lambda^2} F_{\mu \alpha} F^{\mu \beta} (W^+ W^- + W^- W^+) - \frac{e^2}{16 \cos^2 \Theta_W} \frac{a_C^Z}{\Lambda^2} F_{\mu \alpha} F^{\mu \beta} Z^\alpha Z^\beta$$

Parameteres a_0^W and a_C^W, Λ – scale for new physics

In $e\mu$ channel for $p_T(e\mu)>30 \text{ GeV}$: 13 events observed (SM: 8.8 events)

For $\Lambda=500 \text{ GeV}$ new constrains on aQGC 25% better than @7 TeV
(limits at @7 TeV 20 times better than Tevatron and $\sim O(100)$ than LEP)

~10x better limits if proton tagging and high Lumi
→ see CT-PPS talk by Margerita Obertino
Summary

● Total, elastic and diffractive cross sections measured - important input for phenomenological models, MC tuning, and cosmic ray physics

● Hard diffraction results
 • BFKL color singlet exchange measured for the first time at the LHC
 • Hard diffraction still little studied at the LHC, proton tagging (CMS+TOTEM, CT-PPS, AFS) is crucial for expanding number of channels e.g. diffractive dijets, W, Z, J/Ψ

● Rich program for exclusive processes
 • HERA's vector mesons in full swing at increased energy (+ forward detectors to further reduce backgrounds, e.g. HERSCHEL @LHCb)
 • Saturation effect not yet seen
 • First observation of exclusive production of charmonium pairs in DPE
 • Exotic QCD states not yet seen, need more statistics
 • World most stringent limits on aQGC. And will get even better!

Looking forward to Run 2 data.
Elastic/Total pp cross section from ATLAS

\[\sigma_{\text{tot}}^2 = \frac{1}{L} \frac{16\pi}{1 + \rho^2} \left. \frac{dN_{\text{el}}}{dt} \right|_{t \to 0} \]

\[\rho = \frac{\text{Re}(f_{\text{el}})}{\text{Im}(f_{\text{el}})} \bigg|_{t \to 0} = 0.14 \]

ALFA - tracking detectors with scintillating fibers at \(z = \pm 240 \text{ m} \)
\(\beta^* = 90 \text{ m} \) optics, 700 kevts

\[d\sigma_{\text{el}} / dt [\text{mb/GeV}^2] \]
\[\frac{d\sigma_{\text{el}}}{dt} [\text{mb/GeV}^2] \]
\[\frac{d\sigma_{\text{el}}}{dt} [\text{mb/GeV}^2] \]

Exponential fit for \(0.01 < |t| < 0.1 \text{ GeV}^2 \)

ATLAS: \(\sigma_{\text{tot}} = 95.4 \pm 1.4 \text{ mb} \quad B = 19.7 \pm 0.3 \text{ GeV}^{-2} \)

TOTEM: \(\sigma_{\text{tot}} = 98.6 \pm 2.2 \text{ mb} \quad B = 19.9 \pm 0.3 \text{ GeV}^{-2} \)
Diffractive results from CMS

SD/DD separation with CASTOR (-6.6<\eta<-5.2)

\[\Delta \eta^F > 4 \approx \eta_{\min} > -1 \]

All with \(\eta_{\min} > -1 \)

no CASTOR-tag (SD dominated) \hspace{2cm} CASTOR-tag (DD dominated)

\[\xi_X = \frac{M^2_X}{S} \]
CMS+TOTEM, CT-PPS future plans

Two Upgrade Technical Design Reports

Operation at low β^* (< 1 m),
high luminosity, standard runs

Operation at high β^* (19 m, 90 m, > 1 km),
Low - medium luminosity, special runs

CMS-TOTEM Precision Proton Spectrometer (CT-PPS)

High statistics CEP:
DPE exclusive dijets,
photon-photon WW and
BSM EWK couplings.
2016-2017

Timing Measurements in the Vertical Roman Pots of the TOTEM Experiment

Diffractive processes with TOTEM+CMS,
e.g.: SD J/Psi, Y, W, Z, dijet
DPE dijets, hadron spectroscopy (gluballs)
2015-2016

Similar physics program for ATLAS-ALFA and AFP (ATLAS Forward Physics) project
Future prospects

- **HERSCHEL**: High Rapidity Shower Counter
- Increase size of rapidity gap (to ±9). Reduce inelastic backgrounds.
- Trigger for hadrons, photons, electrons as well as muons.
- Exclusive Λ, D, low mass resonances in analysis of continuum, glueballs,

See e.g. R. Wallace at DIS 2015
Dijet events with jet veto from ATLAS

Gap := jet veto \((p_T>20 \text{ GeV}) \) for dijets with \(p_T > 70 \text{ GeV} \). Generally described by POMHEG+PYTHIA (NLO DGLAP)
VM production in Pb-Pb and e-Pb collisions

Other VM at LHC in Pb-Pb

Very strong shadowing and no-nuclear-effect disfavored. But more statistics and more theoretical effort required (e.g. uncertainty of $\Psi(2S)$ wave function).

Vector meson are a key tool to study saturation at EIC: Φ meson well suited for this job.

T. Ullrich

A. Rezaeian