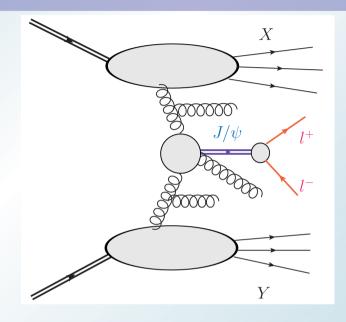


Outline


- Goal: to estimate rescattering correction in heavy vector meson hadroproduction and nuclear effects in perturbative production mechanism
- Sketch of the current status of theory for VM hadroproduction: approaches, strong and week points
- Motivation
- Description of our approach
- Results for J/ψ , Y, interpretation and outlook
 - Work done with M. Sadzikowski

Eur.Phys.J. C75 (2015) 5, 213 arXiv:1501.04915

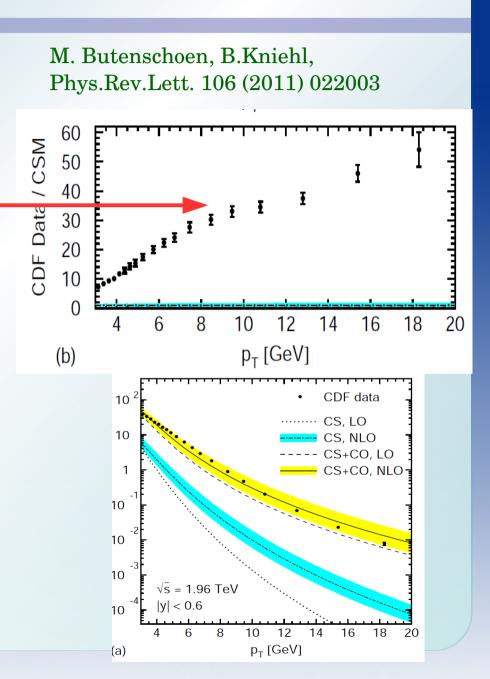
Prompt quarkonia hadroproduction: what is measured

The process at the LHC
 pp → XY J/ψ → XY leptons

- Sources of J/ψ:
 - -direct production
 - -feed down from ψ' , χ
 - -feed down from b-hadrons
 - Features:
 - -abundant, clean signal
 - -perturbative
 - -pT and y dependence
 - -polarisation dependence

Large and growing set of data:

RHIC, Tevatron;

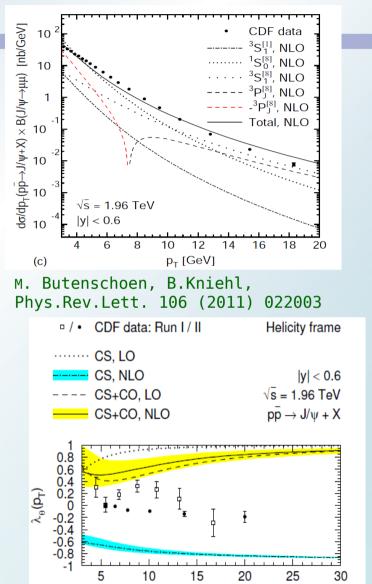

LHC: ATLAS, CMS, LHCb

Collisions with nuclei: ALICE

Also psi', Upsilon (+ excited) quarkonia

Production mechanism: interesting physics

- Heavy vector quarkonia:
 C=-1 + color neutral → need
 for 3 gluons in matrix element
- Spectacular failure of ______
 standard, collinear LO QCD calculations, especially at large pT
- Ways out:
 - -color octet mechanism (NRQCD)
 - -kt-factorisation
 - -higher orders color singlet
 - -rescattering, comovers
 - -color evaporation



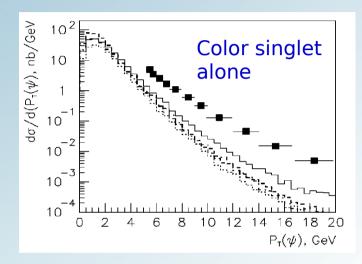
Color octet mechanism

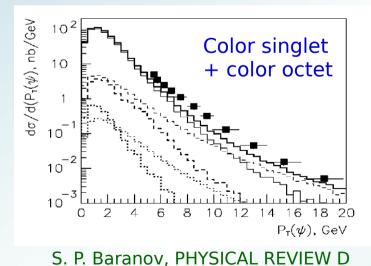
- Basis: NRQCD expansion of meson wave function— in powers of heavy quark velocity or 1/M
- (Q-anti Q gluon) Fock component in heavy meson: with (Q-anti Q) in color octet state and various NLO angular momentum sectors (like hydrogen atom spectroscopy)
- Scaling of such octet components $O(v) \sim O(\alpha_s)$
- Alternative picture: universal (environent-independent) fragmentation probability of octet Q-anti Q pair into vector meson
- Computed in collinear QCD at NLO, including polarisations

Success and problems of color octet mechanism

- A few partonic channels leading to components with different pT-shapes
- With corresponding free fit parameters: pT-dependence of cross sections well reproduced
- However: polarisation description is not fully satisfactory: neither at LO nor at NLO [theoretical NLO description works better for LHC data]

M. Butenschoen, B.Kniehl, Phys.Rev.Lett. 108 (2012) 172002

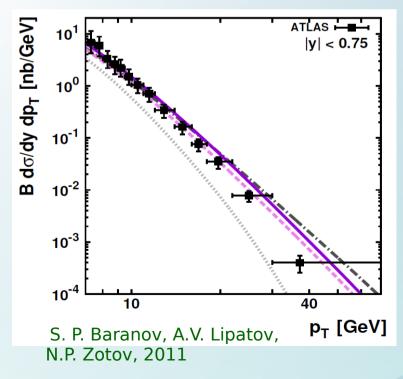

p_T [GeV]


Kt - factorisation

- Meson pT-shapes at LO highly sensitive to incoming parton kT
- kT-factorisation approach: based on unintegrated distributions of partons with non-zero kT and off-shell matrix elements from pQCD
- May be combined with NRQCD picture of meson wave function and color octet mechanism or rely upon the color singlet assumption
- Not fully clear picture: Tevatron data seem to require color octet, LHC data were described with color singlet alone

Kt-factorisation – glimpse of results

Tevatron, 2002

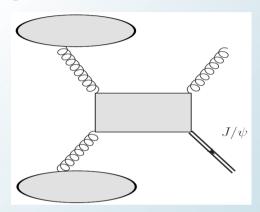

66, 114003, 2002

LHC data are well described in kT factorisation with singlet alone (however some problems with chi to J/psi ratios)

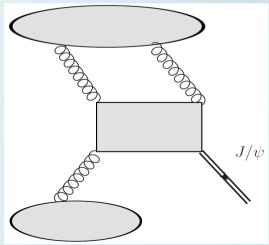
Tevatron data required large octet contribution

In meantime: improvements of the unintegrated gluon density→ unclear picture

LHC, 2011

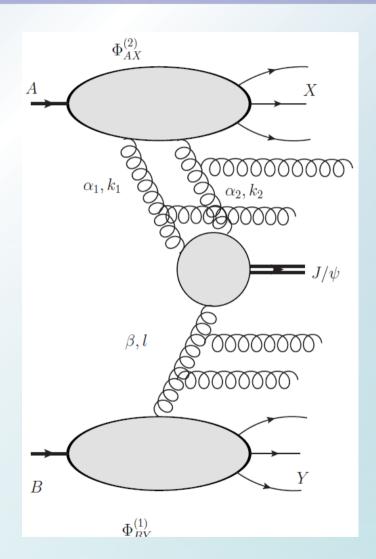

Potentially important color singlet rescattering

Importance of rescattering in VM hadroproduction stressed by Khoze, Martin, Ryskin and Stirling (2004)

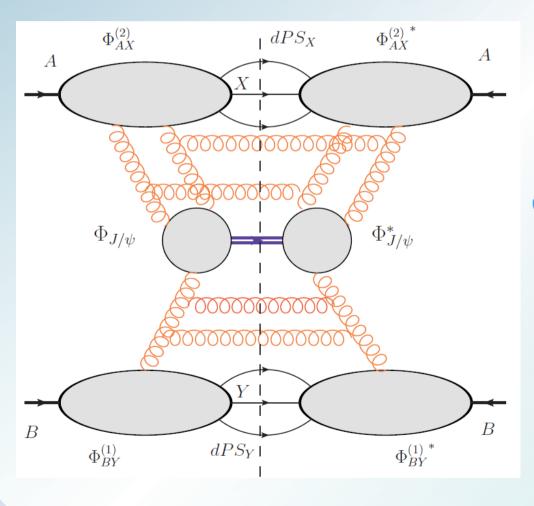

Motivation:

- Matrix elements at the same order of pQCD as the other contributions
- Large double gluon density involved
- Large hadron collision energy → small x of incoming gluons → double density / single density >> 1: enhancement
- However: double gluon density → twist 4 → power suppression with process scale (transverse mass)
- KMRS results: very encouraging, but leaving quite some space for detailed calculations
- Recent calculation within CGC: Qing Ma, Venugopalan

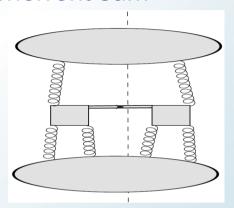
Standard color singlet: gluon emission



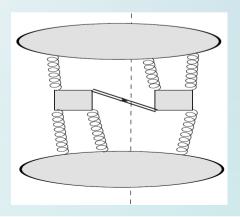
Singlet rescattering: double gluon


Our computation of high energy amplitude: Ingredients

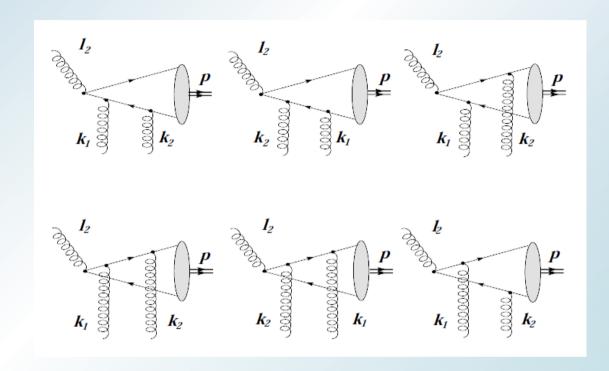
- High energy factorisation
- Single and double unintegrated gluon distributions emerge
- Off-shell 3g → J/ψ (3 → 1 particle)
 matrix element (not leading to partonic cross-section!)
- Impact parameter dependence in double gluon distribution is crucial



Cross-section and interference


 Leading contribution: 2 and 4 gluon t-channel states

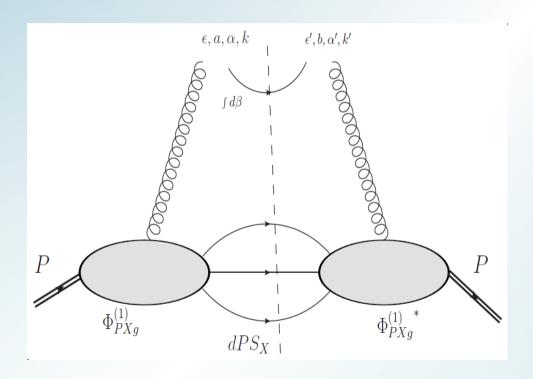
- Also leading: fliped diagram
 - incoherrent sum


Interference term: subleading
 3 gluon t-channel evolution,
 may be neglected

3 gluon → J/ψ vertex

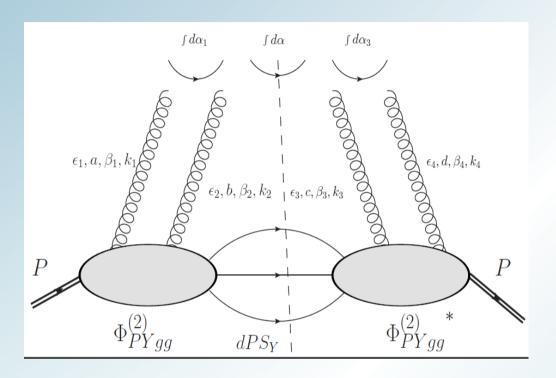
Impact factor: already known

$$\int d\beta_{k_1} \mathcal{S}_{\mu'_2 \nu'_1 \nu'_2}^{\lambda_2 \kappa_1 \kappa_2} (J/\psi) \frac{p_A^{\mu'_2} p_B^{\nu'_1} p_B^{\nu'_2}}{s}$$



[Bzdak, Cudell, Motyka, Szymanowski]

- Impact factor computed with the NR meson wave function
- Safe in the infra-red


Unintegrated gluon distribution

To relate impact factors with unintegrated gluon distribution we apply Collins-Ellis trick: `nonsense gluon polarisations'

$$\int d\alpha_l \, \Phi_{2,p}^{b_1b_2}(\boldsymbol{\alpha}_l,\boldsymbol{\beta},\boldsymbol{l}) \, \sim \, f(\boldsymbol{\beta},\boldsymbol{l}^2) \delta^{b_1b_2}$$

Four gluon amplitude in proton

- The phase-space integrated impact factor for four gluons related to four gluon amplitude in proton
- Dominant color-momentum structure: two (nonforward) ladders – double gluon distribution

$$\int [d\alpha_i] \Phi_{4,p}^{a_1 a_2 a_3 a_4}(\{\alpha_i\}, \{\beta_i\}, \{k_i\}) \sim G_4(\beta; \beta_1, \beta_3; q, k_1, k_3)$$

Double gluon distribution: factorized approximation

- Four gluon amplitude splits into two color singlets
- Intrinsic momentum in ladder > total momentum transfer
- Locality in impact parameter

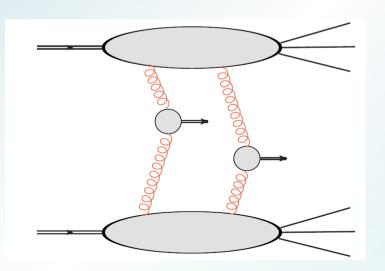
$$G_4(\{\beta_i\}, \{k_i\}) \longrightarrow f(\beta_1, \beta - \beta_1; \mathbf{k}_1, \mathbf{q} - \mathbf{k}_1) \delta^{a_1 a_3} f(\beta_2, -\beta - \beta_2; \mathbf{k}_2, -\mathbf{q} - \mathbf{k}_2) \delta^{a_2 a_4}$$

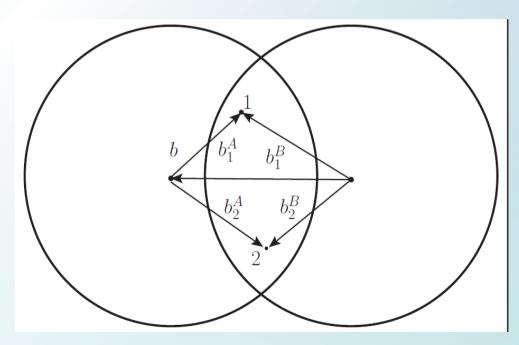
$$\longrightarrow f^{\text{off}}(\beta_1, \beta; \mathbf{k}_1) \tilde{S}(\mathbf{q}) \delta^{a_1 a_3} f^{\text{off}}(\beta_2, -\beta; \mathbf{k}_2) \tilde{S}(\mathbf{-q}) \delta^{a_2 a_4}$$

$$\longrightarrow f^{\text{off}}(\beta_1, \beta; \mathbf{k}_1) S(\mathbf{b}_1 - \mathbf{b}) \delta^{a_1 a_3} f^{\text{off}}(\beta_2, -\beta; \mathbf{k}_2) S(\mathbf{b}_2 - \mathbf{b}) \delta^{a_2 a_4}$$

Factorized Ansatz + symmetries of the amplitudes (consistent with AGK):

$$\begin{split} \int d\alpha_{i} \Phi_{4,p}^{a_{1}a_{2}a_{3}a_{4}}(\{\alpha_{i}\}, \{\beta_{i}\}, \{k_{i}\}) &= \mathcal{N}\left[\delta^{a_{1}a_{2}}\delta^{a_{3}a_{4}}f(\beta_{1}, \beta_{2}; k_{1})\tilde{S}(k_{1}-k_{2})f(\beta_{2}, \beta_{4}, k_{3})\tilde{S}(k_{3}-k_{4})\right. \\ &+ \delta^{a_{1}a_{3}}\delta^{a_{2}a_{4}}f(\beta_{1}, \beta_{3}; k_{1})\tilde{S}(k_{1}-k_{3})f(\beta_{2}, \beta_{4}, k_{2})\tilde{S}(k_{2}-k_{4}) \\ &+ \delta^{a_{1}a_{4}}\delta^{a_{2}a_{3}}f(\beta_{1}, \beta_{4}; k_{1})\tilde{S}(k_{1}-k_{4})f(\beta_{2}, \beta_{3}, k_{2})\tilde{S}(k_{2}-k_{3}) \end{split}$$


Determining the normalisation


 Normalisation constant in relation of double gluon density and the 4 gluon proton impact factor obtained from analysis of double hard event using collinear expressions compared to full kT amplitudes

$$d\sigma_{d} = g(\alpha_{1}, \mu^{2})g(\beta_{1}, \mu^{2}) d\hat{\sigma}_{1}(\alpha_{1}, \beta_{1}) g(\alpha_{2}, \mu^{2})g(\beta_{2}, \mu^{2}) d\hat{\sigma}_{2}(\alpha_{2}, \beta_{2})$$

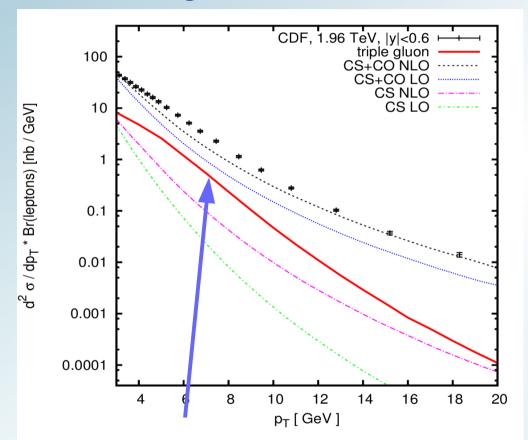
$$\times \int d^{2}\boldsymbol{b} d^{2}\boldsymbol{b}_{1}^{A} d^{2}\boldsymbol{b}_{2}^{A} S(\boldsymbol{b}_{1}^{A}) S(\boldsymbol{b} - \boldsymbol{b}_{1}^{A}) S(\boldsymbol{b}_{2}^{A}) S(\boldsymbol{b} - \boldsymbol{b}_{2}^{A})$$

$$d\sigma_d = \frac{d\sigma_1 d\sigma_2}{\sigma_{\text{eff}}}$$

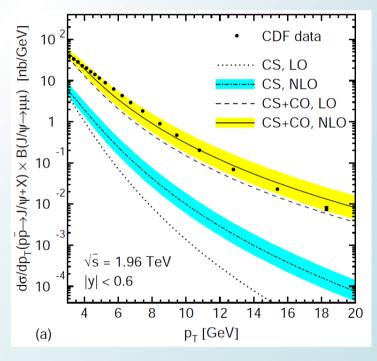
Final formula

$$\frac{d^2 \sigma_{pp \to J/\psi X}}{dY dp_{\perp}^2} = \mathcal{N} \alpha_s^3 R_{\text{sh}}^2 \int d^2 k d^2 k_1 \frac{f(\beta, p - k) f(\alpha, k_1) f(\alpha, k - k_1)}{\left[(p - k)^2 k_1^2 (k - k_1)^2 \right]^2}$$

$$\times \left| V_{J/\psi}(\alpha, \beta; k_1, k - k_1, p - k; \epsilon) \right|^2 \int d^2 q \tilde{S}^2(q) + (\alpha \leftrightarrow \beta, p_A \leftrightarrow p_B)$$

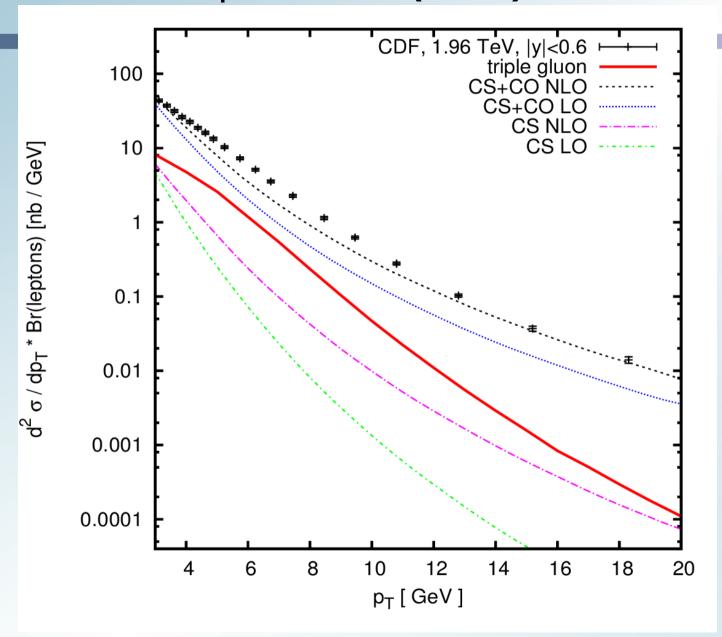

- Leading order in strong coupling constant
- Proportional do square of gluon density
- Power supressed, subleading twist

Calculation details


- Unintegrated gluon: KMR procedure with CT10 (NLO) used for plots and MSTW – similar results
- Off-diagonal gluon densities: inclusion of Shuvaev factors
- α_s ($M_c^2 + k^2$) running coupling scale evaluated "locally"
- Quark mass $M_c = M_{\psi} / 2$
- Impact parameter size for double parton density R ~ 1.7 / GeV \rightarrow σ_{eff} = 15 mb

Results for J/ψ: Tevatron

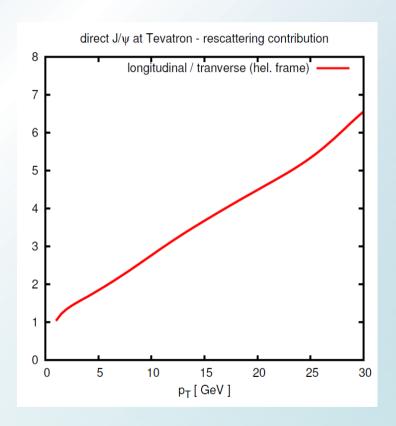
Rescattering contribution: (new)



Reference: for COM at NLO M. Butenschoen and B. Kniehl, Phys. Rev. D84 (2011) 051501

- Color singlet rescattering may make up to 25% of the cross section at moderate pT (like CSM at NLO)
- Shape: steep, power suppression manifest, significantly steeper than Khoze-Martin-Ryskin-Stirling estimates, total cross-sect. < KMRS

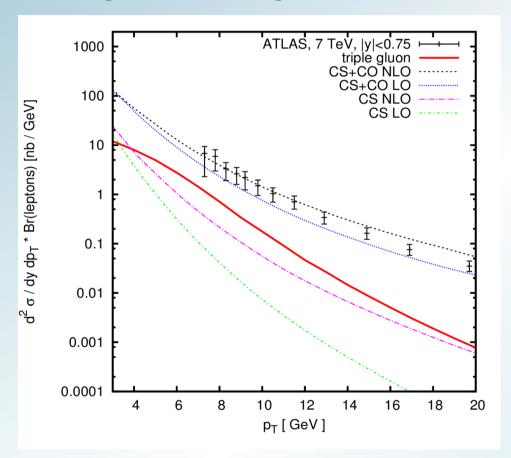
Results for J/ψ: Tevatron (zoom)



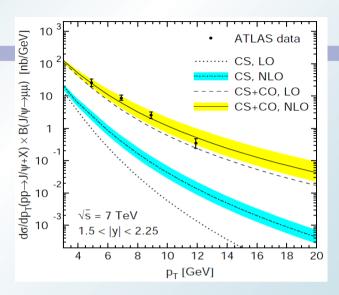
Results: polarisation at Tevatron (helicity frame)

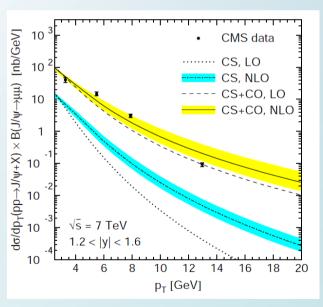
Polarised components

direct J/ψ at Tevatron - rescattering contribution 1.96 TeV, y=0, longitudinal 1.96 TeV, y=0, transverse 1 1.96 TeV, y=0, transverse 1 1.96 TeV, y=0, transverse 2 1.96 TeV, y=0, transverse 2 1.96 TeV, y=0, longitudinal 1.96 TeV, y=0, transverse 2 1.96 TeV, y=0, longitudinal 1.96 TeV, y=0, transverse 1 1.96 TeV, y=0, longitudinal 1.96 TeV, y=0, transverse 1 1.96 TeV, y=0, transverse 2 1.96 TeV, y=0, transverse 1 1

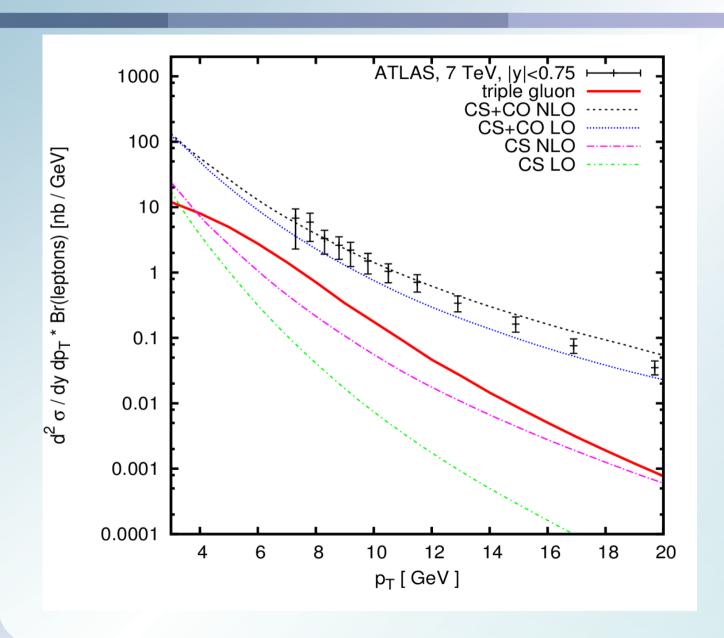

Longitudinal / Transverse

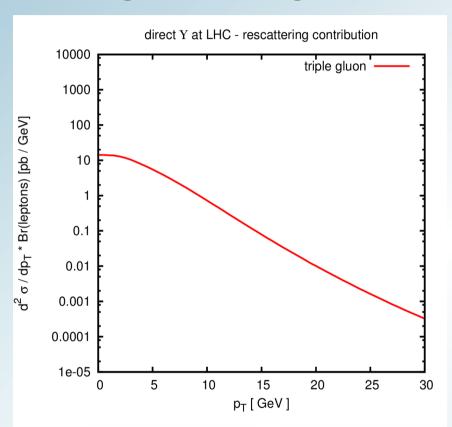
Dominance of longitudinal component grows with pT

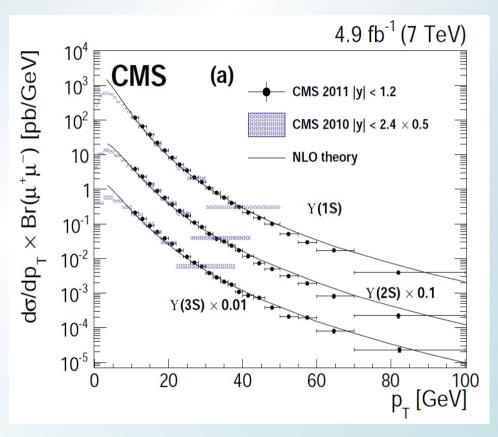

Results for J/ψ: LHC run 1


Color singlet rescattering comtribution (new)

 Similar pattern to one found for Tevatron, O(20%) rescattering correction, steeply decreasing

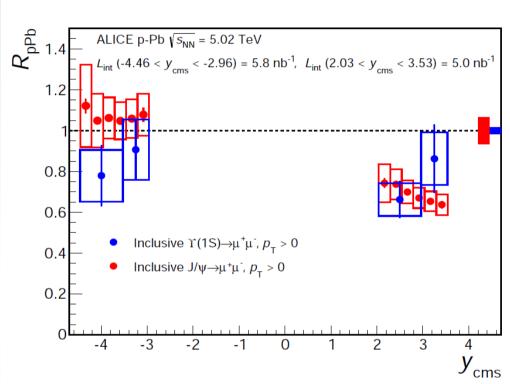

NLO COM Reference


M. Butenschoen and B. Kniehl, Phys. Rev. D84 (2011) 051501


Results for J/ψ: LHC run 1 (zoom)

Results for Y: LHC run 1

Color singlet rescattering comtribution (new)



 For Upsilon(1S) – neglibigle effects of rescattering at the LHC – O(2%) correction – consistent with power suppression of rescattering and larger values of parton x

Effects in proton-nucleus collisions for J/ψ and Y

Recent ALICE results on quarkonia production:

A * (proton – proton)

- We predict ~10% enhancement in nucleus fragmentation region for J/ψ , no visible effects for Y \rightarrow
- Effective anti-shadowing effect in nucleus fragmentation region
- Large ~1 correction in proton fragmentation region → calculation not applicable

Conclusions

- Effects of color singlet rescattering in heavy vector quarkonia hadroproduction were studied in kT-factorisation approach
- The effect is power-supressed but leading in perturbative expansion and enhanced by large gluon densities
- Color singlet rescattering corrections are sizeable: at Tevatron and LHC: larger than standard color singlet contributions and may make up to 25% of direct J/ψ cross section at moderate pT
- Large dependence of polarisation composition on pT was at moderate pT

Outlook

- Heavy quarkonia hadroproduction receives a lot of experimental attention, high quality data are being provided by ATLAS, CMS, LHCb, ALICE
- Production mechanism is complex: the naïve leading CS contribution fails badly to describe data, `subleading' effects (color octet, gluon offshellness, rescattering) may be all necessary to describe the data accurately
- Color singlet rescattering component turns out to be sizeable at moderate pT and introduces strong polarisation effects, so it may affect the COM polarized fits to Tevatron and LHC data
- Other non-standard processes are still to be evaluated
- Interesting to address rescattering in processes with nuclei → parton level enhancement expected

