EDS BLOIS 2015

Double scattering production of two ρ^0 mesons in UPC

Antoni Szczurek ^{1,2} Mariola Kłusek-Gawenda ¹

¹Institute of Nuclear Physics PAN Kraków ²University of Rzeszów

EDS BLOIS 2015

INTRODUCTION

ρ^0 mesons production

Equivalent photon approximation

•
$$\gamma\gamma \to \rho^0 \rho^0$$

- Iow-energy bump
- VDM-Regge
- form factor

nuclear photoproduction \Downarrow

- **2** ρ^0 production
 - ρ^0 mass smearing
 - STAR & ALICE data

 $\rho^{0} \rho^{0} \text{ production} \\ \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

EPA

EQUIVALENT PHOTON APPROXIMATION

The strong electromagnetic field is a source of photons that induce electromagnetic reactions in ion-ion collisions.

ULTRAPERIHERAL COLLISIONS $b > R_{min} = R_1 + R_2$

EPA - $\gamma\gamma$ fusion

NUCLEAR CROSS SECTION

EPA - $\gamma\gamma$ fusion

ELEMENTARY CROSS SECTION

Reference: M. Kłusek, W. Schäfer and A. Szczurek "Exclusive production of $\rho^0 \rho^0$ pairs in $\gamma\gamma$

collisions at RHIC", Phys.Lett. B674 (2009) 92

A. SZCZUREK (INP PAS KRAKÓW)

EDS BLOIS 2015

BORGO, 29 JUNE - 4 JULY 2015 5 /

EPA - $\gamma\gamma$ fusion

$AA \rightarrow AA\rho^0 \rho^0$ - Form factor

$N(\omega_{1/2}, \mathbf{b}_{1/2})$ depends on the form factor

realistic

monopole

$$AA \rightarrow AA\rho^{c}$$

VECTOR MESON PHOTOPRODUCTION

$$\gamma N \rightarrow \rho^0 N$$

SINGLE ρ^0 MESON PRODUCTION

A SEMI-CLASSICAL MODEL FOR $\gamma A ightarrow ho^0 A$ reaction

$$\sigma_{\gamma A \to \rho^{0} A} = \frac{d\sigma_{\gamma A \to \rho^{0} A}(t=0)}{dt} \int_{-\infty}^{t_{max}} dt |F_{A}(t)|^{2} \frac{d\sigma_{\gamma A \to \rho^{0} A}(t=0)}{dt} = \frac{\alpha_{em}\sigma_{tot}^{2}(\rho^{0} A)}{4f_{\rho^{0}}^{2}}$$

• quasi-Glauber (classical Glauber):

$$\sigma_{tot} \left(\rho^0 A \right) = \int d^2 \mathbf{r} \left(1 - \exp\left(-\sigma_{tot} \left(\rho^0 \rho \right) T_A(\mathbf{r}) \right) \right)$$

• quantum mechanical Glauber:

$$\sigma_{tot}^{qm}(\rho^{0}A) = 2\int d^{2}\mathbf{r} \left(1 - \exp\left(-\frac{1}{2}\sigma_{tot}(\rho^{0}\rho) \frac{T_{A}(\mathbf{r})}{T_{A}(\mathbf{r})}\right)\right)$$
nucleus thickness:
$$\frac{T_{A}(\mathbf{r})}{T_{A}(\mathbf{r})} = \int dz\rho_{A}\left(\sqrt{|\mathbf{r}|^{2} + z^{2}}\right)$$

$$\frac{2}{tot}(\rho^{0}\rho) = 16\pi \frac{d\sigma_{\rho^{0}\rho \to \rho^{0}\rho}(t=0)}{dt} \frac{d\sigma_{\rho^{0}\rho \to \rho^{0}\rho}(t=0)}{dt} = \frac{f_{\rho^{0}}^{2}}{4\pi\alpha_{em}} \frac{d\sigma_{\gamma\rho \to \rho^{0}\rho}(t=0)}{dt}$$

$$\int DM \frac{d\sigma_{\gamma\rho \to \rho^{0}\rho}(t=0)}{dt} = B_{\rho^{0}}(XW^{\epsilon} + YW^{-\eta}) \qquad \leftarrow \text{HERA data}$$

 σ

$AA \rightarrow AA\rho^0$ VS GLAUBER MODEL

< 17 ▶

Smearing of ρ^0 mass

$$\frac{\mathrm{d}\sigma_{AA \to AA\rho_0}}{\mathrm{d}m \,\mathrm{d}y} = f(m) \frac{\mathrm{d}\sigma_{AA \to AA\rho_0} (y, m)}{\mathrm{d}y}$$
$$f(m) = \frac{|\mathcal{A}(m)|^2 N_{orm}}{\int |\mathcal{A}(m)|^2 N_{orm} \mathrm{d}m}$$
$$\int N_{orm} |\mathcal{A}(m)|^2 \,\mathrm{d}m = 1$$

$$\mathcal{A}(m) = \mathcal{A}_{\mathcal{BW}} rac{\sqrt{mm_{
ho^0}\Gamma_{
ho^0}(m)}}{m^2 - m_{
ho^0}^2 + im_{
ho^0}\Gamma_{
ho^0}(m)} + \mathcal{B}_{\pi\pi}$$
running width: $\Gamma_{
ho^0}(m) = \Gamma_{
ho^0} rac{m_{
ho^0}}{m} \left(rac{m^2 - 4m_{\pi}^2}{m_{
ho^0}^2 - 4m_{\pi}^2}
ight)^{3/2}$

Smearing of ρ^0 mass

$$\mathcal{A}(m) = \mathcal{A}_{\mathcal{BW}} \frac{\sqrt{mm_{\rho^0} \Gamma_{\rho^0}(m)}}{m^2 - m_{\rho^0}^2 + im_{\rho^0} \Gamma_{\rho^0}(m)} + \mathcal{B}_{\pi\pi}$$
$$\Gamma_{\rho^0}(m) = \Gamma_{\rho^0} \frac{m_{\rho^0}}{m} \left(\frac{m^2 - 4m_{\pi}^2}{m_{\rho^0}^2 - 4m_{\pi}^2}\right)^{3/2}$$

Parameter	ZEUS	STAR	ALICE
$m_{ ho^0}$ [GeV]	0.77 ± 0.002	0.775 ± 0.003	0.761 ± 0.0023
Γ _ρ ₀ [GeV]	0.146 ± 0.003	$\textbf{0.162} \pm \textbf{0.007}$	0.1502 ± 5.5
$\left \frac{\mathcal{B}_{\pi\pi}}{\mathcal{A}_{\mathcal{B}\mathcal{W}}} \right $ [GeV ^{-1/2}]	0.669	$\textbf{0.89} \pm \textbf{0.08}$	0.5 ± 0.04
<i>m</i> [GeV]	(0.55 - 1.2)	(0.5 - 1.1)	(0.28 - 1.512)

A. SZCZUREK (INP PAS KRAKÓW)

2

イロト イポト イヨト イヨト

Smearing of ρ^0 mass

- < ∃ >

SINGLE ρ^0 MESON PRODUCTION

SINGLE ρ^0 meson production

GM	FSZ	KN	Our result		Experimental data
			$m_{ ho^0} = const$	$m_{ ho^0} eq const$	
$\sqrt{\overline{s_{NN}}} = 130 \text{ GeV}; \text{ full } y_{\rho^0} $				STAR	
	490		359	407	$370\pm170\pm80$
$\sqrt{s_{NN}} = 130 \text{ GeV}; y_{\rho^0} < 1$				STAR	
	140		130	143	$106\pm5\pm14$
$\sqrt{\overline{s_{NN}}} = 200 \text{ GeV}; \text{ full } y_{\rho^0} $				STAR	
876	934	590	590	646	$391\pm18\pm55$
$\sqrt{s_{NN}} =$ 2.76 TeV; full $ y_{ ho^0} $				ALICE	
			3309	3405	$4200\pm100^{+500}_{-600}$
$\sqrt{ extsf{s}_{ extsf{NN}}} = 2.76 extsf{ TeV}; \left extsf{y}_{ ho^0} ight < 0.5$			ALICE		
			371	380	$425 \pm 10^{+42}_{-50}$

GM - V.P. Gonçalves and M.V.T. Machado, "The QCD pomeron in ultraperipheral heavy ion collisions. IV. Photonuclear production of vector mesons",

Eur. Phys. J. C40 (2005) 519,

FSZ - L. Frankfurt, M. Strikman and M. Zhalov, "Signals for black body limit in coherent ultraperipheral heavy ion collisions" Phys. Lett. **B537** (2002) 51,

KN - S. Klein and J. Nystrand, "Exclusive vector meson production in relativistic heavy ion collisions", Phys. Rev. **C60** (1999) 014903

DOUBLE-SCATTERING MECHANISM

 $(\rho^0$'s have negligibly small transverse momenta)

DOUBLE-SCATTERING MECHANISM VS $\gamma\gamma$ FUSION

DOUBLE-SCATTERING MECHANISM

DOUBLE-SCATTERING MECHANISM AT RHIC

 $|\eta_{\pi}| < 1$

missing mechanisms:

DOUBLE-SCATTERING MECHANISM AT LHC

COMPARISON OF THE MECHANISMS

Energy	mechanism	$\sigma_{tot} \text{ [mb]}$
$\overline{RHIC}\ (\sqrt{s_{NN}} = 200 \ \mathrm{GeV})$	double-scattering	1.6
- -	$ ho^{0} ho^{0}$ in $\gamma\gamma$ fusion	0.1
	$\pi^+\pi^-\pi^+\pi^-$ in $\gamma\gamma$ fusion	0.1

Reference: M. Kłusek-Gawenda and A. Szczurek "Double-scattering mechanism in the exclusive $AA \rightarrow AA\rho^0 \rho^0$ reaction in ultrarelativistic collisions", Phys. Rev. C89 (2014) 024912

A. SZCZUREK (INP PAS KRAKÓW)

EDS BLOIS 2015

BORGO, 29 JUNE - 4 JULY 2015

3 + 4 = +

TWO-PION PRODUCTION

Reference: M. Kłusek-Gawenda and A. Szczurek, " $\pi^+\pi^-$ and $\pi^0\pi^0$ pair production in photon-photon and in ultraperipheral ultrarelativistic heavy ion collisions", Phys. Rev. **C87** (2013) 054908

CONCLUSIONS

- Impact parameter space approach
- Smearing of ρ^0 meson
- Good description of STAR and ALICE data for single- $\rho^0(770)$ production

Drell-Söding+f₂(1270)

colored solid lines - $\Gamma_{\rho^0} = 150.2 \; \text{MeV}$

colored dashed lines

- $\Gamma_{\rho^0} = 140 \text{ MeV}$

ALICE data arXiv:1503.09177

CONCLUSIONS

- Comparison of four-pion production via $\rho^0 \rho^0$ production
 - $\gamma\gamma$ fusion
 - nuclear double-photoproduction (very large)

with STAR data

- Missing contributions (?)
 - ρ⁰(1450)
 - ρ⁰(1700)
- Multiple Coulomb excitations associated with ρ⁰ρ⁰ production may cause additional excitation of one or both nuclei to the giant resonance region (can be calculated)
 Reference: M. Kłusek-Gawenda, M. Ciemała, W. Schäfer and A. Szczurek "Electromagnetic excitation of nuclei and neutron evaporation in ultrarelativistic ultraperipheral heavy ion collisions"
 Phys. Rev. C89 (2014) 054907

Thank You

CONCLUSIONS

- Comparison of four-pion production via $\rho^0 \rho^0$ production
 - $\gamma\gamma$ fusion
 - nuclear double-photoproduction (very large)

with STAR data

- Missing contributions (?)
 - ρ⁰(1450)
 - ρ⁰(1700)
- Multiple Coulomb excitations associated with ρ⁰ρ⁰ production may cause additional excitation of one or both nuclei to the giant resonance region (can be calculated)
 Reference: M. Kłusek-Gawenda, M. Ciemała, W. Schäfer and A. Szczurek "Electromagnetic excitation of nuclei and neutron evaporation in ultrarelativistic ultraperipheral heavy ion collisions"
 Phys. Rev. C89 (2014) 054907

Thank You