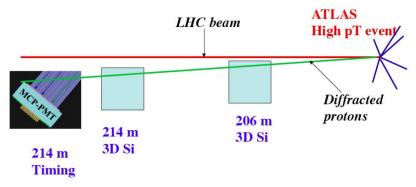
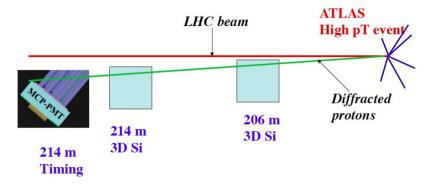
Prospects for new physics searches at the LHC in the forward proton mode

Sylvain Fichet ICTP/SAIFR, Sao Paulo

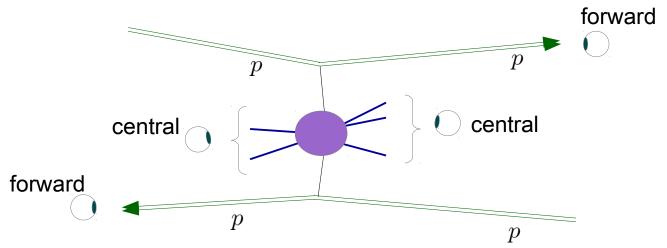

02/07/15

Based on 1311.6815 (JHEP), 1312.5153 (PRD), 1411.6629 (JHEP) + upcoming works

With: G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert

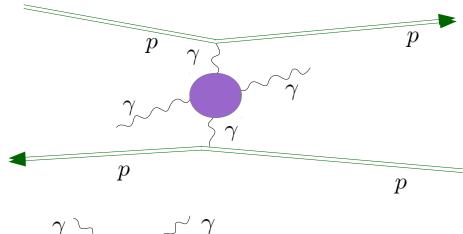

Forward proton detectors

 New detectors scheduled at CMS-TOTEM (CT-PPS) and ATLAS (AFP) to detect intact protons from proton diffraction at small angles



Forward proton detectors

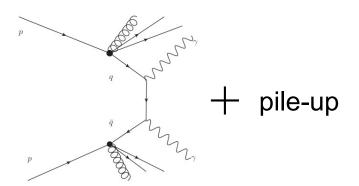
 New detectors scheduled at CMS-TOTEM (CT-PPS) and ATLAS (AFP) to detect intact protons from proton diffraction at small angles


Open possibility to measure central exclusive processes

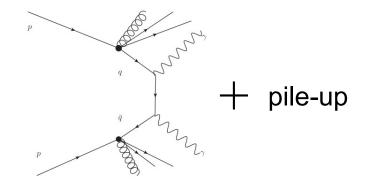
Light-by-light scattering

Light-by-light scattering

Let's focus on four-photon interactions


The SM amplitudes

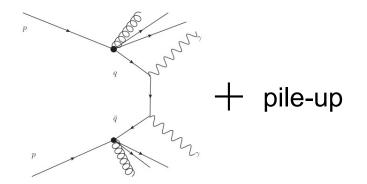
Thus potentially a good place to search for physics beyond the Standard Model


Backgrounds and cuts

- Main background: inclusive diphoton+ intact protons from pile-up
- Others : central exclusive QCD, DPE

Backgrounds and cuts

- Main background: inclusive diphoton+ intact protons from pile-up
- Others : central exclusive QCD, DPE

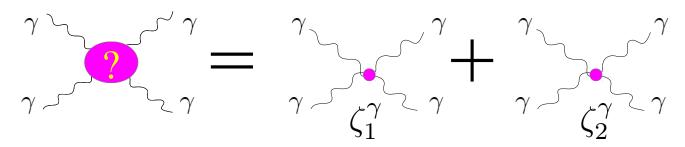


	Cut / Process	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
	$[0.015 < \xi_{1,2} < 0.15,$ $p_{\text{T1},(2)} > 200, (100) \text{ GeV}]$	0.25	0.2	1.6	2968
Acceptance+ basic cuts (no forward dector needed)	$m_{\gamma\gamma} > 600 \text{ GeV}$	0.20	0	0.2	1023
(no iorward dector needed)	$[p_{\rm T2}/p_{\rm T1} > 0.95,$ $ \Delta\phi > \pi - 0.01]$	0.19	0	0	80.2
Full kinematics	$\sqrt{\xi_1 \xi_2 s} = m_{\gamma \gamma} \pm 3\%$	0.18	0	0	2.8
(provided by forward detectors)	$ y_{\gamma\gamma} - y_{pp} < 0.03$	0.18	0	0	0

Sylvain Fichet

Backgrounds and cuts

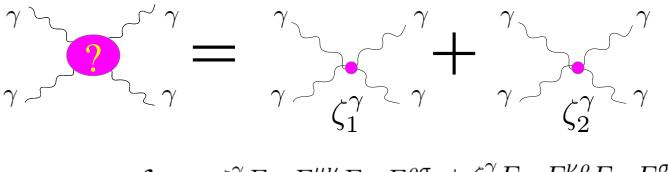
- Main background: inclusive diphoton+ intact protons from pile-up
- Others : central exclusive QCD, DPE



	Cut / Process	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
A a contant de la contant de l	$[0.015 < \xi_{1,2} < 0.15,$ $p_{\text{T1},(2)} > 200, (100) \text{ GeV}]$	0.25	0.2	1.6	2968
Acceptance+ basic cuts (no forward doctor pooded)	$m_{\gamma\gamma} > 600 \text{ GeV}$	0.20	0	0.2	1023
(no forward dector needed)	$[p_{\mathrm{T2}}/p_{\mathrm{T1}} > 0.95,$ $ \Delta\phi > \pi - 0.01]$	0.19	0	0	80.2
Full kinematics	$\sqrt{\xi_1 \xi_2 s} = m_{\gamma \gamma} \pm 3\%$	0.18	0	0	2.8
(provided by forward detectors)	$ y_{\gamma\gamma} - y_{pp} < 0.03$	0.18	0	0	

• The SM is hardly reachable (~ too small and too soft), at least with standard beam configuration. What about new physics signals?

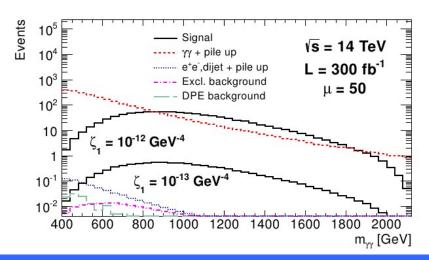
Discovery potential for heavy new physics


• When $m_{NP} > E$, low-energy NP effects can be described by local operators

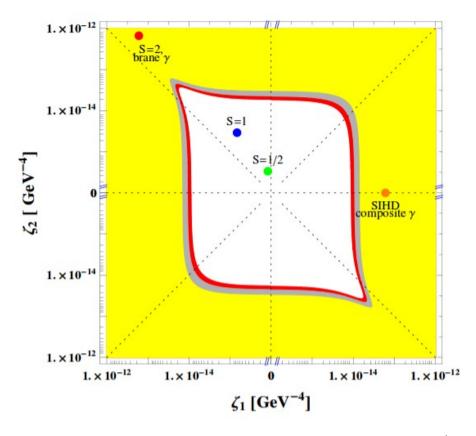
$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu}$$

Discovery potential for heavy new physics

• When $m_{NP} > E$, low-energy NP effects can be described by local operators



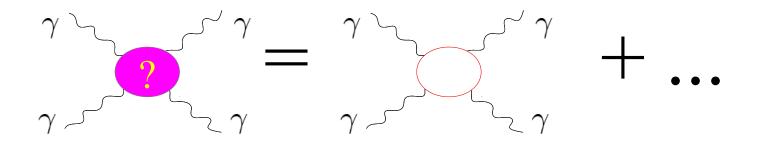
$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu}$$


• EFT 5 σ bounds for $300\,\mathrm{fb}^{-1}$, $\mu=50$

$$\zeta_1^{\gamma} < 9 \cdot 10^{-15} \text{ GeV}^{-4}$$

$$\zeta_2^{\gamma} < 2 \cdot 10^{-14} \text{ GeV}^{-4}$$

Discovery potential for heavy new physics

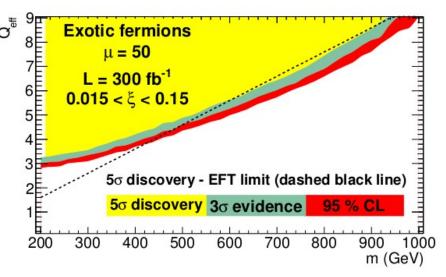


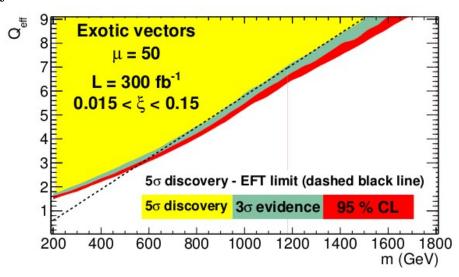
KK graviton (IR brane photon): $m_{\rm KK} < 5670\,{\rm GeV}\,(5\,\sigma)$ Strongly-interacting heavy dilaton: $m_{\varphi} < 4260\,\mathrm{GeV}\,(5\,\sigma)$ [SF/Gersdorff '13]

Actual models can be discovered

Charged particles

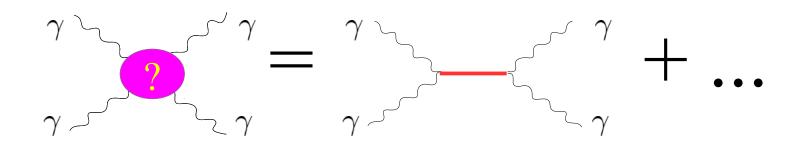
Discovery potential for new charged particles


 Consider generic new electrically charged particles. Because of gauge symmetry, their effects in the four-photon interactions are controlled by only mass, spin, charge and multiplicity. One can use the parameters


$$m, S, \ Q_{eff} \equiv N^{1/4}Q$$

Discovery potential for new charged particles

 Consider generic new electrically charged particles. Because of gauge symmetry, their effects in the four-photon interactions are controlled by only mass, spin, charge and multiplicity. One can use the parameters


$$m, S, \ Q_{eff} \equiv N^{1/4}Q$$

- Provides model-independent bounds on any charged particles. This is complementary
 with respect to direct searches, that are typically very model-dependent.
- Example : vector-like leptons, vector-like quarks...

Neutral particles

The effects of generic neutral particles can also be classified using simplified models.
 Only S=0 (CP even or odd) and S=2 are possible at tree-level. The generic Lagrangian is therefore

$$\mathcal{L}_{\gamma\gamma} = f_{0+}^{-1} \varphi (F_{\mu\nu})^2 + f_{0-}^{-1} \tilde{\varphi} F_{\mu\nu} F_{\rho\lambda} \epsilon^{\mu\nu\rho\lambda} + f_2^{-1} h^{\mu\nu} (-F_{\mu\rho} F_{\nu}^{\ \rho} + \eta_{\mu\nu} (F_{\rho\lambda})^2 / 4),$$

Unlike charged particles, neutral particles can be strongly-coupled.

The effects of generic neutral particles can also be classified using simplified models.
 Only S=0 (CP even or odd) and S=2 are possible at tree-level. The generic Lagrangian is therefore

$$\mathcal{L}_{\gamma\gamma} = f_{0+}^{-1} \varphi (F_{\mu\nu})^2 + f_{0-}^{-1} \tilde{\varphi} F_{\mu\nu} F_{\rho\lambda} \epsilon^{\mu\nu\rho\lambda} + f_2^{-1} h^{\mu\nu} (-F_{\mu\rho} F_{\nu}^{\ \rho} + \eta_{\mu\nu} (F_{\rho\lambda})^2 / 4),$$

Unlike charged particles, neutral particles can be strongly-coupled.

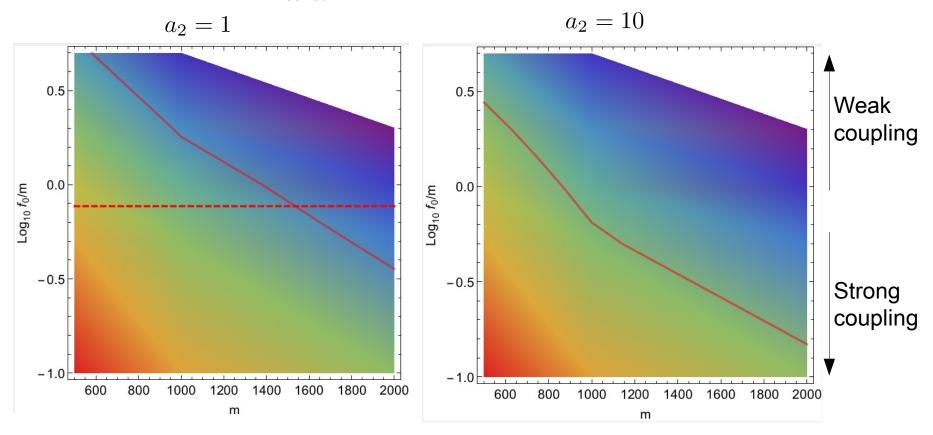
• There are only 2 parameters (coupling and mass). However this is a tree-level parametrisation. Not sufficient because neutral particles can resonate, and because these tree-level diagrams violate unitarity.

Sylvain Fichet

The effects of generic neutral particles can also be classified using simplified models.
 Only S=0 (CP even or odd) and S=2 are possible at tree-level. The generic Lagrangian is therefore

$$\mathcal{L}_{\gamma\gamma} = f_{0+}^{-1} \varphi (F_{\mu\nu})^2 + f_{0-}^{-1} \tilde{\varphi} F_{\mu\nu} F_{\rho\lambda} \epsilon^{\mu\nu\rho\lambda} + f_2^{-1} h^{\mu\nu} (-F_{\mu\rho} F_{\nu}^{\ \rho} + \eta_{\mu\nu} (F_{\rho\lambda})^2 / 4),$$

Unlike charged particles, neutral particles can be strongly-coupled.


- There are only 2 parameters (coupling and mass). However this is a tree-level parametrisation. Not sufficient because neutral particles can resonate, and because these tree-level diagrams violate unitarity.
- Both issues are solved at one-loop.
 The exact generic propagator (with no NWA) reads

$$\frac{i}{s - m^2 + i(a_2 s^2/(4\pi f_0^2) + m\Gamma_{\text{const}})}$$

with $a_2 \ge 1$ because the scalar always decays into photons by assumption.

• Only consistency constraint is $E/4\pi f_0 \ll 1$

• Preliminary results ($\Gamma_{
m const}=0$)

- Below red line: enough sensitivity for discovery using CEP with 300 fb-1.
- Above dashed line: NWA region, where bump searches in inclusive channels are ~possible. Searches using CEP probe strong coupling and are complementary with bump searches

Conclusion

- We estimated the new physics discovery potential from the observation of light-bylight scattering at the LHC, relying on forward proton tagging.
- The main detector effects have been modeled into FPMC.
- All the background can be cut because forward detectors give access to the full kinematics of the process.
- Model-independent bounds on massive charged particles with S=0,1/2,1
- Model-independent bounds on massive neutral particles with S=0,2
- Complementarity with inclusive searches.
- Warped KK gravitons and the SIHD can be detected in the multi-TeV range.

Thank you!

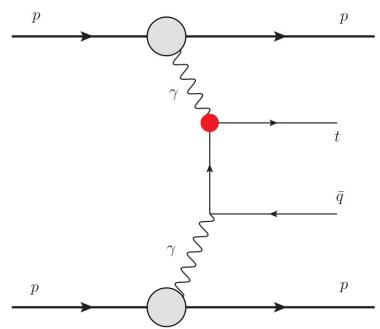
More

Discovery potential for new charged particles

 Earlier we also computed directly the EFT coefficients from charged particles using the background field method [SF/Gersdorff '13]

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu}$$

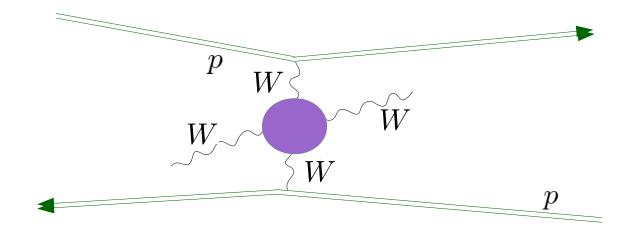
$$\zeta_i^{\gamma} = \alpha_{\rm em}^2 Q^4 m^{-4} N c_{i,s} \quad c_{1,s} = \begin{cases} \frac{1}{288} & s = 0 \\ -\frac{1}{36} & s = \frac{1}{2} \\ -\frac{5}{32} & s = 1 \end{cases}, \quad c_{2,s} = \begin{cases} \frac{1}{360} & s = 0 \\ \frac{7}{90} & s = \frac{1}{2} \\ \frac{27}{40} & s = 1 \end{cases}$$


Scalar loops are smaller!

- What happens to the four-photon interaction for higher-spin particles? (such like higher-spin resonances of a strong sector)
- A part of the above computation can be generalised, showing a S⁵ dependence. But higher-spin theories are not so simple, much more developments are needed. (Work in progress with G. Gersdorff)

Beyond four-photon studies

Some interesting directions: dipole operators


• Dipole operators $\frac{\alpha_{ij}}{\Lambda^2} \bar{f}_i \sigma_{\mu\nu} f_j^{(')} H V^{\mu\nu}$ are predicted in many new physics scenarios. For example,

- New possibilities to search for dipole operators
- If a BSM flavour violating dipole is discovered, directly provides a way of testing the hypothesis of SU(5) unification. The relation to test is $\alpha_{ij} = \alpha_{ji}$. Can be tested using top polarimetry. [SF, Herrmann, Stoll 15']

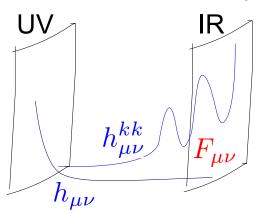
Some interesting directions: W,Z fluxes

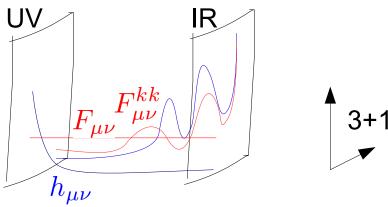
• Having the W,Z fluxes from intact protons would open many many possibilities, including precision tests of $W_L W_L$ scattering.

The equivalent W, Z approximation does not apply, because the intermediate W, Z cannot be on-shell.

Work in progress (any discussion is welcome!)

Some interesting directions: W,Z fluxes


- What about heavy ions? For UPCs, electric charges radiate coherently.
 Should be the same for EW charges.
- Assume EW charges add-up coherently:


fluxes	proton	ion
f_{γ}	$\propto e^2 \sim 0.1$	$\propto Z^2 e^2$
f_{W^+}	$\propto 2g^2 \sim 0.9$	$\propto \frac{g^2(Z+A)^2}{2}$
$\int f_{W^-}$	$\propto g^2/2 \sim 0.2$	$\propto rac{g^2(2 ilde{A}-Z)^2}{2}$
f_Z	$\propto g^2/c_w^2(1/4 - s_w^2 + 2s_w^4) \sim 0.07$	$\propto \frac{g^2}{c_w^2} \left[\frac{(2Z-A)^2}{4} - Z(2Z-A)s_w^2 + 2Z^2s_w^4 \right]$

Collision	$\gamma - \gamma$	$W^{+} - W^{-}$	Z-Z
Pb-Pb / p-p	$\sim 4.5 \cdot 10^7$	$\sim 9.4 \cdot 10^9$	$\sim 4.1 \cdot 10^6$

• Enhancement for $W^+ - W^-$ collisions is 200 larger than for $\gamma - \gamma$ collisions

Warped extra dimensions

- KK gravitons near the IR brane. Gauge fields either on the UV brane or in the bulk. KK gravitons couple to the photon through the 5d stress-energy tensor with warped gravity strength $\kappa = \tilde{k}/M_{Pl}$, that can be O(1)
- Brane scenario : KK gravitons reachable up to

$$m_2 = 6.5 \,\mathrm{TeV}$$

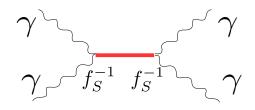
- Bulk scenario : KK gauge fields contribute to EWPO, Higgs couplings. TGCs. But EW IR brane kinetic terms need to be taken into account. $\mathcal{L}_{IR} \supset \frac{r}{4} (W_{\mu\nu}^a)^2 + \frac{r'}{4} (B_{\mu\nu}^a)^2$
- All constraints can be relaxed and KK gravitons reachable in the multi-TeV range

Strongly-interacting heavy dilaton

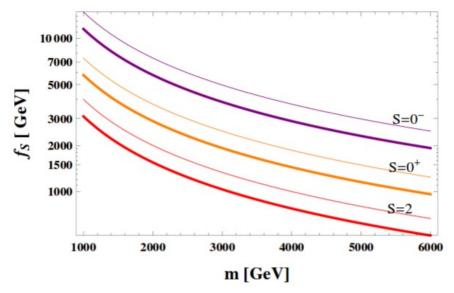
- BSM theories often feature a new strongly-coupled sector (e.g CH models). If conformal in the UV, conformality is broken in the IR (at least by EWSB and QCD).
- The spectrum then features a neutral scalar, the dilaton. Unless the theory is finetuned, its mass is of order of the conformal breaking scale. In absence of fine-tuning, the dilaton couplings are unsuppressed with respect to this scale. We call this the Strongly-Interacting Heavy Dilaton (SIHD)
- The SIHD couples to the trace of the SE tensor ϕT^μ_μ . The SE tensor contains $(F^{\mu\nu})^2,\,(Z^{\mu\nu})^2,\,(W^{\mu\nu})^2,$ thus the tree-level dilaton exchange generates $\zeta_1^{\gamma,Z,W}$

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma}$$

The contribution is large if one has a partially composite photon. For a pure composite photon,


$$\zeta_1^{\gamma} \sim \frac{\pi^2}{2 m_{\phi}^4} \longrightarrow m_{\phi} = 4.8 \, \mathrm{TeV}$$

Simplified models


 Assume that the photon interacts with generic neutral particles. Couplings to CP-even scalar, CP-odd scalar, and CP-even spin-2 are possible,

$$\mathcal{L}_{\gamma\gamma} = f_{0+}^{-1} \varphi (F_{\mu\nu})^2 + f_{0-}^{-1} \tilde{\varphi} F_{\mu\nu} F_{\rho\lambda} \epsilon^{\mu\nu\rho\lambda} + f_2^{-1} h^{\mu\nu} (-F_{\mu\rho} F_{\nu}^{\ \rho} + \eta_{\mu\nu} (F_{\rho\lambda})^2 / 4)$$

Tree-level exchange :

• Using the sensitivities on $\zeta_{1,2}$, one gets model-independent bounds on the couplings

Low-energy effect of higher-spin objects

- Any strongly-interacting extension of the SM potentially features higher-spin composites in its spectrum. In low-energy strings scenarios, strings feature higher-spin excited modes. Assuming the size of the high-spin object is small, it appears to be pointlike at low-energy.
 - **EFT Lagrangian for higher-spin particles**
- HS couplings to the SM have to be bilinear, ie $\mathcal{L}\supset\mathcal{O}\phi_{(s)}\phi_{(s)}^*$
 - HS particles could be spotted in loops.

- Light-by-light scattering might be a good place to look for HS particles
- HS QFT computations: never done and challenging... STAY TUNED!

Open problem: Magnetic monopoles

[Ginzburg/Panfil 82']: Assume a heavy point-like monopole. Its Lagrangian is unknown, but one can use electromagnetic duality to deduce its coupling to the photon.

$$\begin{array}{ll}
B \to E & F_{\mu\nu} \to \tilde{F}_{\mu\nu} \\
E \to -B & \tilde{F}_{\mu\nu} \to -F_{\mu\nu}
\end{array} \qquad g = \frac{2\pi n}{e} \quad n \in \mathbb{N}$$

$$\zeta_{i}^{\gamma} = \alpha_{\rm em}^{2} Q^{4} m^{-4} N c_{i,s} \qquad \zeta_{i,s} \to \frac{g^{4}}{e^{4}} \zeta_{i,s} = \left(\frac{n}{2\alpha_{e}}\right)^{4} \zeta_{i,s}$$

- Very nice reasoning... but what about higher loops?
 - As far as I understand, in the GP paper higher-loops are assumed to be absorbed by renormalization. In reality this does not happen.
 - The formal computation they provide goes through the background field method. This computation provides only the one-loop result and neglects higher loops.

Open problem!

(let me know if you have any idea)