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Regge behaviour in QCD

• Hadronic resonances fall in linear trajectories
Chapter 1. Introduction

Figure 1.2: The Chew–Frautschi plot. Spin J of the isospin I = 1 even parity mesons against
their mass squared. (From reference [4])

String Theory was discovered forty years ago as an attempt to understand hadronic physics.

By that time, QCD and String Theory competed as models of the strong force. Of course, this

QCD/String dispute was decided long ago in favor of QCD. However, the modern viewpoint

replaces dispute by duality, and rephrases the main question: Is QCD a String Theory?

1.1 Hadronic Spectrum & Strings

Although the fundamental particles of QCD are quarks and gluons, the confinement mechanism

disallows their direct observation. Instead, the observed spectrum is characterized by a long

list of colorless bound states of the fundamental particles. Most of these bound states are

unstable and are found as resonances in scattering experiments. At the present day, we are still

unable to accurately predict the observed hadronic spectrum directly from the QCD dynamics1.

Nevertheless, from a phenomenological perspective, the hadronic spectrum has several inspiring

features.

In figure 1.2 we plot the spin J of the lighter mesons against their mass squared m2. The

result is well modeled by a linear Regge trajectory

J = α
(

m2
)

= α(0) + α′m2 ,

where α(0) and α′ are known as the intercept and the Regge slope, respectively. In fact, most

1See [2] and [3] and references therein for attempts using the lattice formulation of QCD and the AdS/CFT
correspondence.
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1.1. Hadronic Spectrum & Strings

Figure 1.3: Regge trajectory determined from the large energy (20–200 GeV ) behavior of the
differential cross section of the process π− + p → π0 + n. The straight line is obtained by
extrapolating the trajectory in figure 1.2. (From reference [4])

of the hadronic resonances fall on approximately linear Regge trajectories with slopes around

1(GeV )−2 and different intercepts. A linear relation between spin and mass squared suggests a

description of the bound states as string like objects rotating at relativistic speeds. Indeed, the

spin of a classical open string with tension T rotating as a straight line segment, with endpoints

traveling at the speed of light, is given by α′ = (2πT )−1 times its energy squared2.

A related stringy feature of QCD is the high energy behavior of scattering amplitudes.

Experimentally, at large center–of–mass energy
√

s, the hadronic scattering amplitudes show

Regge behavior

A(s, t) ∼ β(t)sα(t) ,

where t is the square of the momentum transferred. The appropriate Regge trajectory α(t)

that dominates a given scattering process is selected by the exchanged quantum numbers. For

example, the process

π− + p → π0 + n

is dominated by the exchange of isospin I = 1 even parity mesons, i. e. the Regge trajectory

in figure 1.2. In figure 1.3 we plot the Regge trajectory obtained from the behavior of the

differential cross section at large s. Elastic scattering is characterized by the exchange of the

vacuum quantum numbers. In this case the scattering amplitude is dominated by the Pomeron

2See section 2.1.3 of [5] for details.

3

�� + p� �0 + n

Total cross section
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(s � t)
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• Scattering dominated by t-channel exchange of a Regge trajectory
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Soft Pomeron trajectory [Donnachie, Landshoff]

• Trajectory selected by exchanged quantum numbers. For elastic scattering 
these are the vacuum quantum numbers.

Elastic cross sections in QCD

Chapter 1. Introduction

Figure 1.4: Total cross sections for elastic scattering at high energy. The cross sections rise
slowly due to pomeron exchange. (From reference [6])

trajectory[6, 4]

αP (t) ≃ 1, 08 + 0, 25 t , (GeV units) .

There is some evidence from lattice simulations that there are glueball states lying on this

trajectory starting from spin J = 2 [7, 8]. Furthermore, an even glueball state with spin 2

lying on the pomeron trajectory seems to have been found in experiments [9]. However, in real

QCD, glueball states mix with mesons and their identification is not clear [6]. An important

consequence of the pomeron intercept being larger than 1, is that hadrons effectively expand at

high energies. More precisely, the total cross section for elastic processes in QCD grows with

center–of–mass energy,

σ ∼ sαP (0)−1 ∼ s0.08 ,

as can be seen in figure 1.4. This expansion with energy reinforces the picture of hadrons as

stringlike objects. It is well known [10] that the average size of a fundamental string is given by

the divergent sum,

< R2 >∼ α′
∞
∑

n=1

1

n
,

coming from the contributions of zero point fluctuations of each string mode. However, in

a scattering experiment, only the modes with frequency smaller than the energy
√

s can be

4

jP (t) ⇡ 1.08 + 0.25t (GeV units)

� ⇠ s jP (0)�1 ⇠ s0.08



Soft Pomeron trajectory [Donnachie, Landshoff]

Exchange of even spin glueballs (J � 2)

OJ ⇠ F↵[�1
D�2 . . . D�J�1F

↵
�J ]

• Trajectory selected by exchanged quantum numbers. For elastic scattering 
these are the vacuum quantum numbers.
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Deep Inelastic Scattering

• Optical theorem

�

X
= Im

2

(t = 0)
X

P

γ γ

P

γ

P

P

X

γ
e� e�• Pomeron enters also in diffractive processes. 

For example DIS, where electron interacts with 
proton via exchange of off-shell photon

Is it the same Regge trajectory? 
One or two pomerons (soft and hard)?

• Regge limit corresponds to low x (s ⇠ Q

2
/x)

j0 ⇠ 1.1� 1.4
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Hard Pomeron [BFKL - Balitsky, Fadin, Kuraev & Lipatov]

2.65

Two (reggeized) gluon exchange with ladder interactions

(�s ln 1/x)n
Resums                          contributions

Valid for hard probes 

Q

j0 = 1 +
12 ln 2

⇡
↵s

Q � ⇤QCD

Exhibits conformal symmetry, hard pomeron is a cut in 
J-plane starting at 

J

� � �
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Hard Pomeron [BFKL - Balitsky, Fadin, Kuraev & Lipatov]

• Breaking conformal symmetry, 
explains well DIS data outside 
the confining region Q � �QCD

[ Kowalski, Lipatov, Ross, Watt 10]

2.65

Two (reggeized) gluon exchange with ladder interactions
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Resums                          contributions
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Q
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Graviton/Pomeron Regge trajectory [Brower, Polchinski, Strassler, Tan 06]

• At strong coupling pomeron trajectory described by string theory graviton 
Regge trajectory in Anti-de Sitter space (large N, conformal theory                   )

O
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O
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�
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Again a cut in J-plane, starting at 

J

N = 4 SYM
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m2 = �(�� 4)� Jwith



Graviton/Pomeron Regge trajectory [Brower, Polchinski, Strassler, Tan 06]

• Explains well low x data for DIS, DVCS, VMP including inside confining 
region Q � �QCD

DIS - [Cornalba, MSC 08; Levin, Potashnikova 10; Brower, Djuric, Sarcevic, Tan 10]
DVSC - [MSC, Djuric 12]
VMP - [MSC, Djuric, Evans 13]

• At strong coupling pomeron trajectory described by string theory graviton 
Regge trajectory in Anti-de Sitter space (large N, conformal theory                   )

O
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DIS - AdS Pomeron [Brower, Djuric, Sarcevic, Tan 10]

P lots

F igure: Global �ts to the combined Z E US-H1 small-x data. Dot ted red lines are
for single conformal B PS T Pomeron and dot ted blue lines are for single hard-wall
B PS T Pomeron.

Djurić — Small-x AdS Deep Inelastic Scattering 25/37

HERA combined data by H1 and ZEUS 
experiments                           with[Aaron et al 10]

0.10 < Q2 < 400 GeV 2, x < 10�2

For hard wall model obtained excellent fit 
with (249 points)

�2
d.o.f. = 1.07
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Figure 9: The fit of the hard-wall pomeron model to the data. The first five figures are for the
di�erential cross section data and the last one for the cross section. W is the center of mass energy
and we use units of GeV. To avoid cluttering the last figure we did not plot all of the Q2 values.
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�2
d.o.f. = 0.51

All data (52 points)

DVSC (differential cross section) [MSC, Djuric 12]



VMP (                      ) [MSC, Djuric, Evans 13]J/ , !, �, ⇢0
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AdS/QCD [Gursoy, Kiritsis, Nitti 07]

• 5D dilaton-gravity phenomenological model constructed to reproduce QCD
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AdS/QCD [Gursoy, Kiritsis, Nitti 07]

Constructed to match QCD perturbative beta function

Reproduces:  - heavy quark-antiquark linear potential

- glueball spectrum from lattice simulations

- thermodynamic properties of QGP (bulk viscosity, 
drag force and jet quenching parameters)

Judicious choice of potential with only 2 free parameters!

• 5D dilaton-gravity phenomenological model constructed to reproduce QCD

z

IRUV

x

↵

Boundary

S =
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• Operators that contribute are the twist 2 
operators
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Graviton/Pomeron Regge trajectory [Brower, Polchinski, Strassler, Tan 06]

• Operators that contribute are the twist 2 
operators

OJ ⇠ F↵[�1
D�2 . . . D�J�1F

↵
�J ]

• Dual to string theory spin J field in leading 
Regge trajectory

�
D2 �m2

�
ha1...aJ = 0

m2 = �(�� 4)� J , � = �(J)

• Diffusion limit

J(�) = J0 +D (�� 2)2 m2 =
2

↵0 (J � 2)� J

L2)

2

4

1 2 4

⇠ ln J

BFKL

J

�� 2

GRAVITON
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AdS Spin J field

� = 4 , J = 2

h�
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�
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i
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a3...aJ
= 0

• Spin J field equation of motion (graviton                       )
� = �(J)

� = 2 + J + �J

e.g. in 
perturbation theory

�(�� 4) =
2

↵0 (J � 2)

• Analytically continue using diffusion approximation for             (          )J < J0 � 2 C
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• Sum over spin J exchanges in 5D dual theory

J

J

� � �
2 4 6

j2(t)

j1(t)

j3(t)



Pomeron Regge trajectories



Pomeron Regge trajectories

• Problem reduces to a J-dependent 
Schrodinger potential. Poles in J-plane 
at 
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Pomeron Regge trajectories

• Problem reduces to a J-dependent 
Schrodinger potential. Poles in J-plane 
at 

1 2 3 4

5
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z

V (z) J = 2 J = 1.5

J = 1
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T (s, t) ⇠
X

n

⇣
e�A(z)�A(z0)s

⌘jn(t)
 n(z) 

⇤
n(z

0)

t = tn(J) ) J = jn(t) t1

t2

t3

• Obtained approximate linear Regge 
trajectory. One free parameter to fit soft 
pomeron intercept and slop. E.g.

-5 5 10 15

1

2

3

4

5

t

j(t)

Free parameter                  consistent with
value obtained for quark-antiquark potential

ls = 0.18

n = 1

n = 2

n = 3

n = 4j1(t) ⇡ 1.08 + 0.22 t
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Concluding Remarks

• AdS/QCD phenomenological model matches surprisingly well the intercept 
and slope of Donnachie-Landshoff pomeron

• Connection with hard-pomeron. Understand running of effective exponent

� ⇠ 1

s

Im T (s, t = 0) ⇠ f(Q)

✓
1

x

◆✏eff (Q)

Add next sub-leading poles and study behavior 
with a varying probe scale Q 

We can also ⇥t the data to `e�ect ive Pomerons', by ⇥xing Q2 , and then
⇥t t ing

F2(x,Q
2) � (1/x)�eff

By doing this we get the following

F igure: Q2-dependence for e�ect ive Pomeron intercept ,  P = 1 +  eff .
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[Brower, Djuric, Sarcevic, Tan 10]



Concluding Remarks

• AdS/QCD phenomenological model matches surprisingly well the intercept 
and slope of Donnachie-Landshoff pomeron

• Improve 5D equation for spin J field to reproduce anomalous dimensions
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Add next sub-leading poles and study behavior 
with a varying probe scale Q 

We can also ⇥t the data to `e�ect ive Pomerons', by ⇥xing Q2 , and then
⇥t t ing

F2(x,Q
2) � (1/x)�eff

By doing this we get the following

F igure: Q2-dependence for e�ect ive Pomeron intercept ,  P = 1 +  eff .

Djurić — Small-x AdS Deep Inelastic Scattering 30/37

[Brower, Djuric, Sarcevic, Tan 10]



Concluding Remarks

• AdS/QCD phenomenological model matches surprisingly well the intercept 
and slope of Donnachie-Landshoff pomeron

• Improve 5D equation for spin J field to reproduce anomalous dimensions

• Make a careful analysis of data for DIS, DVSC and VMP. Goal:
unify soft and hard pomerons

• Connection with hard-pomeron. Understand running of effective exponent

� ⇠ 1

s

Im T (s, t = 0) ⇠ f(Q)

✓
1

x

◆✏eff (Q)

Add next sub-leading poles and study behavior 
with a varying probe scale Q 

We can also ⇥t the data to `e�ect ive Pomerons', by ⇥xing Q2 , and then
⇥t t ing

F2(x,Q
2) � (1/x)�eff

By doing this we get the following

F igure: Q2-dependence for e�ect ive Pomeron intercept ,  P = 1 +  eff .
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