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Overview

Single inclusive hadron production in pA scattering:

1 ”kT -factorized” approach : Kovchegov & Tuchin

Both the projectile and the target are at very small-x (very high energy)⇒ Color
Glass Condensate (CGC) is applicable to both!

2 ”Hybrid” formalism : Dumitru, Hayashigaki & Jalilian-Marian

The wave function of the projectile proton is treated in the spirit of collinear
factorization (an assembly of patrons with zero intrinsic transverse momenta)

Perturbative corrections to this wave function are provided by the usual QCD
perturbative splitting processes.

Target is treated as distribution of strong color fields which during the scattering
event transfer transverse momentum to the propagating partonic configuration.
(CGC like treatment)
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Particle Production at NLO within ”Hybrid” formalism

T.A., A. Kovner - 2011

DOES LO ”HYBRID” FORMULA TAKE INTO ACCOUNT ALL
CONTRIBUTIONS AT HIGH k⊥ ?

The single inclusive gluon spectrum :

dN

d2kdηd2b
∝
[

dN

d2kdη

]

elastic

+

[
dN

d2kdη

]

inelastic

In the limit of large transverse momentum of the produced gluon k � Qs ,ΛQCD

there are two dominant contributions:

”Elastic Scattering” (LO)

kT

kT

pT � kT

1

”Inelastic Scattering” (NLO)

pT � kT

kT

−kT

1
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Particle Production at NLO within ”Hybrid” formalism

G.A. Chirilli, B.W. Xiao, F. Yuan - 2012
Full NLO calculation...
A.M.Stasto, B.W.Xiao, D. Zaslavsky - 2013
Numerical analysis...
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FIG. 1: Comparisons of BRAHMS [10] (h�) and STAR [11] (⇡0) yields in dAu collisions to results of the numerical calculation
with the rcBK gluon distribution, both at leading order (tree level) and with NLO corrections included. The edges of the solid
bands were computed using µ2 = 10 GeV2 to 50 GeV2.

tion becomes negative increases with rapidity, as can be
seen from Fig. 1. Once the hadron transverse momentum
p? is larger than Qs(xg), the NLO correction starts to
become very large and negative. This indicates that we
need to either go beyond NLO or perform some sort of
resummation when p? > Qs(xg), due to this theoreti-
cal limitation of the dilute-dense factorization formalism
at NLO. This is an important problem but it lies out-
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FIG. 2: Comparisons of BRAHMS data [10] at ⌘ = 3.2 with
the theoretical results for four choices of gluon distribution:
GBW, MV with ⇤ = 0.24 GeV, BK solution with fixed cou-
pling at ↵s = 0.1, and rcBK with ⇤QCD = 0.1 GeV. The edges
of the solid bands show results for µ2 = 10 GeV2 to 50 GeV2.
As in other figures, the crosshatch fill shows LO results and
the solid fill shows NLO results.

side the scope of the current work and we will leave this
to future study. Given these limitations, we expect the
dilute-dense factorization formalism to work much better
for more forward rapidity regions. This trend is indeed
observed in Fig. 1 and Fig. 3. Nevertheless, as shown in
all the plots, the results computed from SOLO are stable
and reliable as long as p? < Qs(xg).

Furthermore, we have also run SOLO with three
other choices of dipole gluon distribution: the Golec-
Biernat and Wustho↵ (GBW) model [34], the McLerran-
Venugopalan (MV) model [4], and the solution to the
fixed coupling BK equation. As shown in Fig. 2, all four
parametrizations give similar results and agree with the
BRAHMS data in the p? < Qs region. For other plots,
we only use the rcBK solution, which is the most sophis-
ticated parametrization.

Fig. 3 shows predictions made by SOLO for pPb col-
lisions at high pseudorapidities which are accessible at
LHC detectors, in particular 5.3  ⌘  6.5 for TOTEM’s
T2 telescope [35] and ⌘ � 8.4 at LHCf [36]. Of course,
our prediction in the left plot should only be valid when
p? < 3 GeV, which is about the size of the saturation
momentum at the corresponding rapidity.

One of the advantages of the NLO results is the signif-
icantly reduced scale dependence as shown in Fig. 4. In
principle, cross sections for any physical observable, if it
could be calculated up to all order, should be completely
independent of the factorization scale µ. However, as
shown in Fig. 4, the LO cross section is a monotonically
decreasing function of the factorization scale µ. This is
well-known and is simply due to the fact that an increase
of µ causes both the parton distribution function (in the
region x > 0.1) and the fragmentation function (in the

Comparison of BRAHMS (h−) and STAR (π0) yields in dAu collisions to results of
the numerical calculation with rcBK gluon distribution, both at LO and with NLO
corrections included.
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What are the missing pieces of the puzzle?

(1) The choice of simplest frame: PROJ frame

It is convenient to work in the frame where most energy of the process is carried by
the target. In this frame :

The target moves fast and carries almost all the energy of the process.

The projectile moves fast enough to be able to accommodate partons with
momentum fraction xp but not so fast that it develops a large low-x tail.

In PROJ frame:

P+
P, PROJ = s

2P−T , PROJ

, P+
P, PROJ = const. , P−T , PROJ ∝ s

Target is evolved to s from an initial s0 via BK evolution.

To get to s0:

projectile is boosted to rapidity YP from its rest frame.
target is boosted to rapidity Y 0

T from its rest frame.

s0 = 2P+
P,PROJP−0

T ; P+
P,PROJ =

MP√
2

eYP ;

P−0
T =

MT√
2

eY
0
T ; P−T =

MT√
2

eY
0
T +YT
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Rapidity Balance

in Sec. III. C, in a certain kinematic regime our evolution
interval turns out to be effectively similar to the one in
[24,34]. The different scales are illustrated in Fig. 1.
With this partition of degrees of freedom between the

projectile and the target, our setup is fixed. Any projectile
parton scatters on a member of the same target field
ensemble. Averaging over this ensemble leads to the dipole
scattering matrix sYT

ðx; yÞ, which at fixed energy of the
process does not depend on the transverse momentum or
rapidity of the final state hadron.
Note that at this point we do not have to specify what is

exactly the evolution equation that governs the evolution of
the target. This equation is self-consistently determined
from the calculation itself. Unsurprisingly, we will find that
at the accuracy of our calculation the relevant evolution is
the leading-order BK equation.

B. YT vs Yg

Importantly, the above discussion does not uphold the
prescription used in [24] and in current numerical imple-
mentations [26–28]. The procedure set out in [24] is to
evolve the target to rapidity Yg ¼ ln 1

xg
with xg ¼ p⊥ffiffi

s
p e−η.

The reason for choosing this particular value of Yg in [24] is
based on the following kinematic argument. At leading
order the incoming projectile parton carries momentum
ðpþ; 0; 0Þ. The parton measured in the final state has the
same þ component of momentum, transverse momentum
p⊥, and is on shell. This means that during the scattering it

picks up the − component of momentum p− ¼ p2
⊥

2pþ ¼
e−η p⊥ffiffi

2
p from the target. If one assumes that this momentum

has been transferred to the projectile parton by a single
gluon of the target, the gluon in question must have carried
at least this amount of p−, and therefore had to have the
longitudinal momentum fraction of the target

xg ¼
p−

P− ¼ e−η
p⊥ffiffiffi
s

p : ð2:12Þ

On the other hand, the high-energy evolution (in the dilute
regime) has the property that any hadronic wave function is
dominated by softest gluons. One thus may conclude that
xg is the longitudinal momentum fraction of the softest
gluons in the target wave function, and thus the target has to
be evolved to Yg.
On closer examination, however, it transpires that this

argument does not hold water. It overlooks the fact that the
target is in fact dense. For the dense target, the projectile
parton undergoes multiple scatterings, and therefore picks
up momentum p− not from a single target gluon but from
several. This means that xg is actually an upper bound on
the momentum fraction of the target gluons, and therefore
Yg only gives a lower bound on the rapidity up to which the
target wave function has to be evolved. In fact, it is very
natural that the total rapidity YT should not depend on the
transverse momentum of the produced particle rather than
depend on it as in (2.12). Recall that in the dense scattering
regime, the transverse momentum of the scattered parton
“random walks” as the parton propagates through the
target. Thus the total transverse momentum is proportional
to the square root of the number of collisions with the target
gluons, p2

⊥ ∝ Ng. On the other hand, the transferred p−

does not random walk, since all the gluons in the target
have p− of the same sign. Thus p− ∝ Ng, which is perfectly
consistent with the relation between p− and p⊥ that follows
from the on-shell-ness condition of the outgoing parton.
Therefore, increasing p⊥ of the observed parton (at fixed
pþ), while increasing the total p− acquired by the projectile
parton, does not change the fraction of longitudinal
momentum of individual gluons in the target wave function
that participate in the scattering, and therefore does not
affect the value of YT .
In the leading-logarithmic approximation it is not impor-

tant what exactly is the value of the evolution parameter for

FIG. 1. Different rapidity and momenta scales in our setup.

ALTINOLUK et al. PHYSICAL REVIEW D 91, 094016 (2015)
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What are the missing pieces of the puzzle?

(2) What scatters? The Ioffe Time Restriction

The Ioffe Time Restriction provides a consistent description on what will be resolved
by the target and what not!

Only the pairs whose coherence time (Ioffe time) is greater than the
propagation time through the target can be resolved by the target!
Ioffe time is related with the size of the target at initial energy s0.

(3) The rapidity to which eikonal scattering amplitudes have to be evolved?

YT vs Yg

Yg = ln 1
xg

& xg = e−η p⊥√
2s

for a dense target projectile parton undergoes multiple scattering.
the momentum transfer p− is not from a single gluon but from several.
xg is an upper bound on the momentum fraction of the target gluon ⇒ Yg

gives a lower bound on the rapidity up to which the target wave function has to
be evolved!

YT = ln s
s0
X
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The quark channel

The parton level production cross section at LO :

dσq

d2p⊥dη
=

1

(2π)2

∫
d2xd2y e ip⊥(x−y)sYT

(x , y)

↘
fundamental dipole scattering amplitude

s(x , y) =
1

Nc
tr [SF (x)S†F (y)]

At NLO the quark splits in the projectile wave function with probability of order αs

into a quark-gluon configuration.
The dressed quark state :

|(q) xBP+, k⊥, α, s〉D =

∫

x
e ik⊥x

{
Aq|(q) xBP+, x , α, s〉

+g

∫

ξ,yz
F(qg)(xBP+, ξ, y − x , z − x)ss̄;j taαβ

|(q) y , p+ = (1− ξ)xBP+, β, s̄; (g) z , q+ = ξxBP+, a, j〉
}

Aq is of order g 2 and needed to preserve the normalisation of the state at order
αs .
F(qg) is the function that defines the splitting of a quark into a quark-gluon
pair.
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The quark channel

The dressed quark scatters on the target and produces final state particles.

Within ”hybrid” formalism, the scattering of the qg pair is treated as a completely
coherent process ⇒ each parton picks an eikonal phase during the interaction with
the target.

THIS IS ONLY POSSIBLE if the coherence time (Ioffe Time) of the configuration is
greater than the propagation time through the target.

coherent scattering⇒ 2(1− ξ)ξxBP+

k2
⊥

> τ

τ ≡ a fixed time scale determined by the longitudinal size of the target.

It enters to calculation via initial energy P+/τ = s0/2.

The Ioffe time restriction is in fact given in terms of initial energy s0!

The pairs that do not exist long enough are not resolved! Those pairs:

have large k⊥ and have small transverse size.
scattering and particle production from those pairs are indistinguishable from
single parent quark.
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The quark channel

The standard eikonal paradigm for propagation of the initial dressed quark with
vanishing transverse momentum through the target leads to the final state

|out, α, s〉 =

∫

x

{
SF
αβ(x) |(q)x , β, s〉D

+
g 2

2π

∫
dLPS

∫

y ,z

[
taαβSF

βγ(y)SA
ab(z)− SF

αβ(x)tbβγ

]
F̄ 2

(qg)(ξ, xp, y − x , z − x)

tbγδ |(q) x , δ, s〉D

+
g

2π

∫
dLPS

∫

y ,z
F(qg)(ξ, xp, y − x , z − x)s,s̄,i

[
taαβSF

βγ(y)SA
ab(z)− SF

αβ(x)tbβγ

]

|(q) y , (1− ξ), γ, s̄; (g) z , ξ, b, i〉D
}

LPS ≡ Longitudinal Phase Space
The function F(qg) is written as

F(qg) =
i√

2ξxBP+

{
δss̄δij(2− ξ)− iεijσ

3
ss̄ξ
}
δ2
(

x − [(1− ξ)y + ξz ]
)

Ai
ξ,xB

(y − z)

↙
Modified Weiszacker-Williams field
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The quark channel

The modified Weizsacker-Williams field is defined as

Ai
ξ,xB

(y − z) = −i

∫

l2⊥<2ξ(1−ξ)xB
P+

τ

d2l⊥
(2π)2

l i⊥
l2
⊥

e il⊥(y−z)

= − 1

2π

(y − z)i

(y − z)2

[
1− J0

(
|y − z |

√
2ξ(1− ξ)

xBP+

τ

)]

with transverse momentum l⊥ is

l⊥ = ξp⊥ − (1− ξ)q⊥

The Ioffe time constraint is implemented on the phase space {k⊥, ξ} in the
definition of F(qg)(y − x , z − x) rather than in the integral over ξ.

Neglecting the Ioffe time constraint on l⊥, one gets the Fourier transform of
the standard Weizsacker-Williams field.

With the Ioffe time constraint, the relative contribution of short distances are
suppressed. F(qg) at small z − x becomes reduced.
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The quark channel

The quark production cross section is given by the expectation value of the dressed
quark number in the outgoing state, multiplied by the number of dressed quarks in
the incoming wave function:

dσq

d2p⊥dη
= xpf D

µ2 (xp)〈out|D†(k⊥, x)D(k⊥, x)|out〉

For the quark production we find

dσq

d2p⊥dη
=

1

(2π)2
xpf D

µ2 (xp)

∫

x ,y
e ip⊥(x−y)sYT

(x , y)

︸ ︷︷ ︸
+

dσq1
d2p⊥dη︸ ︷︷ ︸

LO NLO

The quark production cross section at NLO :

dσq1
d2p⊥dη

= p+ dσq1
d2p⊥dp+

= p+ dσq→q,r
1

d2p⊥dp+
+ p+ dσq→q,v

1

d2p⊥dp+
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The quark channel

The NLO cross section contain collinear divergences.

I r1 =
g 2

(2π)3
CF

∫
dxB f D,q

µ2 (xB)

∫ 1−xp

0
dξ

xp
1− ξ δ

(
xB −

xp
1− ξ

) [
1 + (1− ξ)2

ξ

]

×Cµ2(ξ, xB)

∫

yȳ
e ip⊥(y−ȳ)s[y , ȳ ]

I r2 =
g 2

(2π)3
CF

∫
dxB f D,q

µ2 (xB)

∫ 1−xp

0
dξ

xp
1− ξ δ

(
xB −

xp
1− ξ

) [
1 + (1− ξ)2

ξ

]

×(1− ξ)2Cµ2(ξ, xB)

∫

yȳ
e ip⊥(y−ȳ)s

[
(1− ξ)y , (1− ξ)ȳ

]

I v = −(1 + 1)
g 2

(2π)3
CF

∫
dxB f D,q

µ2 (xB) xp δ (xB − xp)

∫ 1

0
dξ

[
1 + (1− ξ)2

ξ

]
Cµ2(ξ, xB)

×
∫

yȳ
e ip⊥(y−ȳ)s[y , ȳ ]

where the integral over z up to “factorization scale” µ can be defined for example as

Cµ2(ξ, xB) =

∫

z
Ai
ξ,xB

(z) Ai
ξ,xB

(z) θ(z2µ2 − 1)
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PDF’s and Fragmentation functions

f D that appears in the LO term is the number of “dressed quarks” in the proton.
Part of the O(αs) terms complete it to the NLO pdf of bare quarks (DGLAP of
PDFs and FFs).

f q
µ2(xp) = f D

µ2 (xp) +
g 2CF

2π

∫ 1−xp

0

dξ

1− ξ f D
µ2

(
xp

1− ξ

)
1 + (1− ξ)2

ξ
Cµ2

(
ξ,

xp
1− ξ

)

− g 2CF

2π
f D
µ2 (xp)

∫ 1

0
dξ

1 + (1− ξ)2

ξ
Cµ2 (ξ, xp)

The fragmentation function of the ”dressed quark”:

DD,q
H,µ2(ζ) = Dq

H,µ2(ζ) +
g 2

2π
CFDq

H,µ2(ζ)

∫ 1

0
dξ

1 + (1− ξ)2

ξ
Cµ2

(
ξ,

xp
ζ

)

− g 2

2π
CF

∫ 1−ζ

0

dξ

1− ξDq
H,µ2

(
ζ

1− ξ

)
1 + (1− ξ)2

ξ
Cµ2

(
ξ,

xp
ζ

)
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Relating our factorization scheme to MS

The collinear factorization scheme that we use, does not coincide with the standard
MS scheme.

In order to find the relation between the two schemes:

we have calculated the d-dimensional generalisation of our collinear subtraction
term Cµ2 .
use the fact that single inclusive cross section is scheme independent.
compare our result (scheme X) with the MS one.

f q
X

(
xB ;µ2

F

)
= f q

MS

(
xB ; R2µ2

F

)

Dq
H,X

(
ζ;µ2

frag

)
= Dq

H,MS

(
ζ; R2µ2

frag

)

with the rescaling factor R = 2eψ(1) ≈ 1.1229.
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The Final Result

Adding all the pieces together, we have the final expression for the quark channel:

p+ dσq→H

d2p⊥dp+
=

1

(2π)2

∫
dζ

ζ2
Dq
H(ζ)

xp
ζ

f q
p⊥

(
xp
ζ

)∫

yȳ
e i

p⊥
ζ

(y−ȳ)sYT
[y , ȳ ]

+

∫
dζ

ζ2
Dq
H(ζ)

d σ̄q

d2p⊥dη

(
p⊥
ζ
,

xp
ζ

)

The quark production cross section has two parts:

a piece that is independent of Ioffe time restriction which coincides with the
existing results in the literature.
a piece that carries the Ioffe time restriction:

g 2

(2π)3
Ncxpf q

µ2(xp)

∫ 1

0

dξ

ξ

∫

yȳz
e ip⊥(y−ȳ)

[
Ai
ξ(y − z)− Ai

ξ(ȳ − z)
]2

× [s(y , z)s(z , ȳ)− s(y , ȳ)]
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What about the evolution?

The way we set up the problem, the dipole scattering amplitude is evolved up
to rapidity YT = ln s

s0
starting with an initial condition provided at Y 0

T .

The final result should not care which s0 we choose if we evolve the dipole
cross section appropriately.

The dependence on s0 enters explicitly through the cutoff on the phase space
and through the dependence of the scattering amplitude on the amount of
evolution YT . Therefore

s0
d

ds0

[
dσ

d2p⊥dη

]
=

[
s0

∂

∂s0
− dsYT

dYT

δ

δsYT

]
dσ

d2p⊥dη
= 0

and

s0
∂

∂s0

[
dσ

d2p⊥dη

]
= −αsNc

π
xpf (xp)

∫

y ,ȳ ,z

1

(2π)3
e ip⊥(y−ȳ) (y − ȳ)2

(y − z)2(ȳ − z)2

×
[
s(y , ȳ)− s(y , z)s(z , ȳ)

]

⇒ the dipole amplitude evolves according to the BK equation...
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Extra contribution to the evolution?

The finite term that appears in the quark production cross section looks like an
extra contribution to the evolution:

g 2

(2π)3
Ncxpf q

µ2(xp)

∫ 1

0

dξ

ξ

∫

yȳz
e ip⊥(y−ȳ)

[
Ai
ξ(y − z)− Ai

ξ(ȳ − z)
]2

× [s(y , z)s(z , ȳ)− s(y , ȳ)]

If we try to write it as an extra contribution to evolution:

change the order of integration: ξ and F.T. WW field:

∫
d2l⊥

∫
d2m⊥ ln

(
1

ξmin

)
d

dY
s(l⊥ + p⊥,m⊥ − p⊥)

with

ξmin = max

{
l2
⊥

xps0
,

m2
⊥

xps0

}

Together with the leading order, this is like an effective evolution by

Yl⊥ = YT + ln
xps0

l2
⊥

= ln
1

xg
+ ln

p2
⊥

l2
⊥
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Remark: a very recent paper

Implementing the exact kinematical constraint in the saturation formalism

Kazuhiro Watanabe,1 Bo-Wen Xiao,1 Feng Yuan,2 and David Zaslavsky1

1Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics,
Central China Normal University, Wuhan 430079, China

2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

We revisit the issue of the large negative next-to-leading order (NLO) cross section for
single inclusive hadron production in pA collisions in the saturation formalism. By im-
plementing the exact kinematical constraint in the modified dipole splitting functions, two
additional positive NLO correction terms are obtained. In the asymptotic large k? limit, we
analytically show that these two terms become as large as the negative NLO contributions
found in our previous calculation. Furthermore, the numerical results demonstrate that the
applicable regime of the saturation formalism can be extended to a larger k? window, where
the exact matching between the saturation formalism (in the asymptotic k? regime) and the
collinear factorization calculations will have to be performed separately. In addition, after
significantly improving the numerical accuracy of the NLO correction, we obtain excellent
agreement with the LHC and RHIC data for forward hadron productions.

PACS numbers: 24.85.+p, 12.38.Bx, 12.39.St

I. INTRODUCTION

A focal point of the frontier of high energy nuclear physics at RHIC and the LHC is the study of
saturation in hadron collisions. Saturation is an e↵ect that emerges due to bremsstrahlung gluon
radiation in the hadronic wavefunction. It was prompted by the theoretical prediction that, at
high energy, the gluon density rises rapidly as x, the longitudinal momentum fraction of the gluons
with respect to their parent hadron, decreases. This rise is governed by the famous Balitskii,
Fadin, Kuraev, and Lipatov (BFKL) evolution equation [1], which emerges from resummation
of terms proportional to ↵s ln 1

x . However, when the gluon density becomes high, it is expected
that gluons start to recombine and QCD dynamics becomes nonlinear. This eventually leads to
the onset of gluon saturation [2–4], as a result of the nonlinear QCD dynamics. To quantify the
recombination e↵ect, a nonlinear term in the gluon evolution equation was proposed in Ref. [2, 3].
This nonlinear extension of the BFKL evolution equation was later independently derived by
Balitsky and Kovchegov; accordingly, the equation is referred to as the BK evolution equation [5, 6].
Theoretically, it seems that gluon saturation is bound to occur as a result of high energy evolution.

The task remains to find a “smoking gun” signature of gluon saturation in experimental data at
e.g. RHIC or the LHC. A wealth of results in pA collisions, ideal for observing saturation [7], are
becoming available. But it is critical to have precise, quantitative phenomenological calculations
in the saturation formalism to compare to these experimental results.

Single inclusive hadron production in pA collisions at high energy reveals the interesting physics
of gluon saturation particularly well, compared to pp collisions. The e↵ect of dense gluons in the
target nucleus can be characterised by the introduction of a semi-hard momentum scale, which

is known as the saturation scale Qs, a function of the momentum fraction xg =
k+
gluon

k+
nucleon

, and the

nuclear mass number A. Roughly speaking, the saturation scale can be used to separate the
saturated (dense) regime, in which the nonlinear energy evolution applies, from the (dilute) regime
in which the evoution is linear. When the typical hard scale of the scattering, Q, is less than Qs,
one expects that the target partons involved in the interaction are saturated. On the other hand,
when Q � Qs, the saturation e↵ect is no longer important, and standard perturbative QCD should
be su�cient to describe the data.

ar
X

iv
:1

50
5.

05
18

3v
1 

 [h
ep

-p
h]

  1
9 

M
ay

 2
01

5

12

10�7

10�5

10�3

10�1

101

⌘ = 2.2

d
3
N

d
⌘
d
2
p
?

⇥ G
eV

�
2
⇤

GBW

LO
+NLO
+Lq + Lg

BRAHMS

⌘ = 2.2

rcBK ⇤2
QCD = 0.01

LO
+NLO
+Lq + Lg

BRAHMS

1 2 3
10�7

10�5

10�3

10�1

101

⌘ = 3.2

p?[GeV]

d
3
N

d
⌘
d
2
p
?

⇥ G
eV

�
2
⇤

1 2 3

⌘ = 3.2

p?[GeV]

FIG. 4. Comparisons of BRAHMS data [9] with the center-of-mass energy of
p

sNN = 200GeV per nucleon
at rapidity y = 2.2, 3.2 with our results. As illustrated above, the crosshatch fill shows LO results, the
grid fill indicates LO+NLO results, and the solid fill corresponds to our new results which include the NLO
corrections from Lq and Lg due to the kinematical constraint. The error band is obtained by changing µ2

from 10 GeV2 to 50 GeV2.

(transformed) formulas. The LO and LO+NLO curves are very similar to earlier results published
in Ref. [43]; some slight di↵erences are due to the increased precision of the new formulas. In the
meantime, the Lq and Lg corrections are completely negligible in the region where p? . Qs. On
the other hand, where p? & Qs, Lq and Lg start to become important and alleviate the negativity
problem in the GBW model, and help us to better describe the data in the high p? region. In the
rcBK case, we find that the full NLO cross section now becomes completely positive and provides
us excellent agreement with all the RHIC data.

In Figure 6, we show the comparison between the forward ATLAS data at y = 1.75 and the
numerical results from SOLO. We observe remarkable agreement between the full NLO calculation
from the saturation formalism and experimental data up to 6 GeV. Again, similar as we have seen
earlier, the newly added Lq and Lg corrections help to increase the applicable p? window of the
saturation formalism from roughly 2.5–3 GeV to 6GeV. From 6GeV and up, the full NLO cross
section still becomes negative, which implies that the saturation formalism does not apply anymore
and the collinear factorization should be used. Admittedly, what we have seen is only one piece
of promising clue for the gluon saturation phenomenon. More data in di↵erent forward rapidity
windows at the LHC shall allow us to conduct precise tests of the theoretical calculation and may
eventually provide us the smoking gun proof.
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Remark: a very recent paper
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FIG. 5. Comparison of STAR data [10] with
p

sNN = 200GeV at y = 4 with results from SOLO for the
GBW and rcBK models. The color scheme is the same as in figure 4, and again, the error band comes from
µ2 = 10 GeV2 and 50GeV2. We do not see the negative total cross section because the cuto↵ momentum
above which the cross section becomes negative is larger than the p? of the available data, and in fact larger
than the kinematic limit

p
sNNe�y.
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FIG. 6. Comparison of ATLAS forward-rapidity data [21] with the center-of-mass energy of
p

sNN =
5.02 TeV at y = 1.75 with SOLO results for the GBW and rcBK models. Again, the color scheme is the
same as in figure 4. Here the error band shows plots for µ2 = 10 GeV2 and µ2 = 100 GeV2. Since the
numerical data for these measurements are not published, we have extracted the ATLAS points from Fig. 6
of Ref. [21]. The extraction procedure introduces uncertainties comparable to the size of the points.

In Figure 7, we show the comparison between the ALICE and ATLAS data at y = 0 and the
numerical results from SOLO. We find that the full NLO results, especially the one with the rcBK
solution, miss the data. (It seems that the GBW model roughly agrees with the data, but we believe
that it is probably just a coincidence.) This indicates that the dilute-dense factorization breaks
down at y = 0. This is completely expected for the following reason. First, the collinear parton
distributions of the proton projectile do not resum small-x logarthms and may have considerable
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Summary

By introducing the Ioffe Time Restriction, we have defined clearly the limits of
coherent scattering and distinguish what will be resolved by the target and
what not.

We have defined the rapidity up to which the scattering amplitude has to be
evolved.

We have shown that how the Balitsky-Kovchegov evolution equation arises as
the appropriate tool to evolve the leading order amplitude in this setup.

Numerical results of Watanabe, Xiao, Yuan, Zaslavsky shows a clear
improvement!
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