Elastic scattering at the LHC

Christophe Royon
Institute of Physics, Academy of Sciences, Czech Republic
Nuclear Physics Institute (PAN), Cracow, Poland

Jan Kaspar
CERN

Valentina Avati
AGH, Cracow, Poland

Blois EDS Workshop, Borgo, Corsica, June 28- July 4 2015

Contents:

• Elastic scattering from ISR to Tevatron
• ALFA and TOTEM experiments
• ALFA and TOTEM elastic measurements at 7 and 8 TeV
• ALFA and TOTEM total cross section measurements
• Future measurements
Elastic scattering: From ISR to Tevatron
Elastic scattering: From ISR to Tevatron

\[\frac{d\sigma}{dt} \text{(mb/GeV}^2) \]

- UA4 × 100 (0.546 TeV)
- CDF (1.800 TeV)
- E710 (1.800 TeV)
- DØ (1.960 TeV)
Elastic scattering at the LHC: variety of predictions

- Variety of models especially at high $|t|$
- Regions in $|t|$ at the LHC sensitive to different kinds of physics:
 - Diffraction/Pomeron exchange at low $|t|$, diffractive structures at medium $|t|$ and parton scattering/QCD at higher $|t|$
ATLAS/ALFA and TOTEM Roman pot detectors

- For elastic measurements, TOTEM installed vertical roman pot detectors at 220 m from CMS.
- ATLAS-ALFA installed similar roman pots at 240 m.
- Trigger for elastics using proton in opposite configurations: Up (Down) on one side, Down (Up) on the other side.
Forward coverage in CMS-TOTEM

Inelastic Telescopes:
charged particles in inelastic events:
→ multiplicities, rapidity gaps

T_1: $3.1 < |\eta| < 4.7$, $p_T > 100$ MeV
T_2: $5.3 < |\eta| < 6.5$, $p_T > 40$ MeV
→ Inelastic Trigger

Roman Pots: elastic & diffractive protons close to outgoing beams → Proton Trigger

Roman Pot stations in the LHC tunnel (before LS1)

RP (147 m) RP (220 m)
ALFA and TOTEM detectors

TOTEM

Planar silicon detectors
Stack of 10
Insensitive region < 60-70\(\mu\)m
Space resolution 11\(\mu\)m per stack

ATLAS/ALFA

Scintillating fibres
10 staggered planes
Insensitive region < 20-30\(\mu\)m
Space resolution 35 \(\mu\)m
Similarities between ALFA and TOTEM

- Divergence smaller than angles to be measured $\Rightarrow \sqrt{\varepsilon}/\beta^*$ small
 \Rightarrow large β^*; ATLAS/TOTEM used $\beta^*=90\text{m}$

- "parallel to point" in at least one plane
 ATLAS/TOTEM in vertical plane

- Large effective lever arm in at least one plane for good t-resolution
 $\theta_y = y/L_y^{\text{eff}}$ ATLAS/TOTEM vertical plane

- Different methods used to reconstruct t (differences in horizontal lever arm)
- Different methods used to extract the elastic and total cross sections
- ATLAS claims smaller uncertainties due to luminosity measurement
pp scattering at 7 TeV (ATLAS)

- Coverage in t: $0.006 < |t| < 0.38$ GeV2
- Simple exponential fit to data ($\frac{d\sigma}{dt} = A \exp(-B|t|)$) leads to
 - $A = 474 \pm 13(syst) \pm 4(stat)$, and
 - $B = 19.73 \pm 0.26(syst) \pm 0.14(stat)$,
 - $\sigma_{el} = 24.00 \pm 0.57(syst) \pm 0.19(stat)\text{ mb}$
pp scattering at 7 TeV (TOTEM)

- Wide range of measurement in t: $0.005 < |t| < 0.2$ GeV2, results in red, $0.002 < |t| < 0.33$ GeV2, results in green

- Simple exponential fit: $A = 506.4 \pm 23 \text{(stat)} \pm 0.9 \text{(syst)}$, $A = 503.0 \pm 26.7 \text{(syst)} \pm 1.5 \text{(stat)}$; $B = 19.89 \pm 0.27 \text{(syst)} \pm 0.03 \text{(stat)}$, $B = 20.1 \pm 0.3 \text{(syst)} \pm 0.2 \text{(stat)}$
pp scattering at 8 TeV (TOTEM)

- High statistics data set ($\beta^* = 90\text{m}$, 7 million elastic events, $0.027 < |t| < 0.2 \text{ GeV}^2$)
- $\sigma_{el} = 27.1 \pm 1.4 \text{ mb}$
\textit{pp scattering at 8 TeV (TOTEM)}

- **Exponential fit:** \(\frac{d\sigma}{dt} = A \exp(-B(t)|t|) \)
- **Pure exponential form \((N_b = 1)\) excluded at 7.2 \(\sigma\)
 - \(N_b = 1\) \(B = b_1\), reference
 - \(N_b = 2\), \(B = b_1 + b_2t\)
 - \(N_b = 3\), \(B = b_1 + b_2t + b_3t^2\)
Total cross section measurement (7 TeV)
Elastic scattering in the Coulomb-Nuclear interference region

\[F_{C+H} = F_C + F_H e^{i\alpha\Psi} \]

- \(F^C = \alpha_S/t^2(t) \)
- \(F^H \): Modulus constrained by measurement in hadronic \(t \)-region \((d\sigma/dt = A \exp(-B(t)|t|)) \) and \(B(t) = b_0 + b_1 t \); Hadronic phase \(\arg(F^H(t)) \): very little guidance by data
- Interference formula for \(\exp i\alpha\Psi \) term:
- Simplified West-Yennie formula:
 - Constant slope \(B(t) = b_0 \), already excluded by data
 - Constant hadronic phase \(\arg(F^H) = p_0 \)
 - \(\Psi(t) \) acts as real interference phase
- Kundrat-Lokajicek formula:
 - Any slope \(B(t) \)
 - Any hadronic phase \(\arg(F^H) = p_0 \)
 - Complex \(\Psi(t) \)
Different options for the unknown nuclear phase

“central phase”: profile function in impact parameter picture: Elastic scattering preferentially central

\[
\arg F(t) = \frac{\pi}{2} - \tan \frac{p_0}{1 - \frac{t}{t_d}}
\]

constant phase: also central behaviour

\[
\arg F(t) = p_0
\]

Result for

\[
\rho = \frac{\Re F^H(0)}{\Im F^H(0)} = \cot \arg F^H(0) = \cot p_0
\]

“peripheral phase”: profile function in impact parameter picture: Elastic scattering preferentially peripheral

\[
\arg F(t) = p_0 + \alpha \exp \left[\kappa \left(\ln \frac{t}{t_m} - \frac{t}{t_m} + 1 \right) \right]
\]

is model dependent
Elastic scattering in the Coulomb-Nuclear interference region

- Measure elastic scattering at $|t|$ as low as 6×10^{-4} GeV2 using high $\beta^* = 1000$ m optics
- Detectors approach the beam at 3σ from the beam center
- Measurement of ρ expected soon!
More data available: Stay tuned!

| Experiment | \sqrt{s} (TeV) | $\beta'(m)$ | RP approach (beam σ) | $|t|$- range (GeV2) | Elastic events | Reference |
|------------|------------------|-------------|-----------------------------|-----------------------|---------------|-----------|
| ATLAS | 7 | 90 | 6.5 | 0.01–0.38 | 805K | Nucl. Phys. B 889 (2014), 486 |
| | 8 | 90 | 6-10 | | | In progress |
| | 8 | 1000 | 3-10 | | | In progress |
| TOTEM | 7 | 90 | 4.8 – 6.5 | 5 · 10^3 – 0.4 | 1M | EPL 101 (2013), 21002 |
| | 7 | 90 | 10 | 0.02 – 0.33 | 15K | EPL 96 (2011), 21002 |
| | 7 | 3.5 | 7 | 0.36 – 2.5 | 66K | EPL 95 (2011), 41001 |
| | 7 | 3.5 | 18 | 2 – 3.5 | 10K | In progress |
| | 8 | 90 | 6 – 9.5 | 0.01 – 0.3 | 0.65M | PRL 111, 012001 (2013) |
| | 8 | 90 | 9.5 | 0.03 – 1.4 | 7.2M | ArXiv:1503.08111 Submit Nucl. Phys. B |
| | 8 | 1000 | 3 – 10 | 6 · 10^4 – 0.2 | | In progress |
| | 2.76 | 11 | 5 – 13 | 0.06 – 0.5 | 45K | In progress |
The future: roman pot system now!

- **New collimator TCL6**
- **Intercept showers from RP insertions at high beam intensity**
- **existing RP220**
- **new horizontal RP for future timing detectors**

RP147 relocated to 203-214m
- 214m unit tilted 8° around beam axis
 - multitrack event reconstruction
- RF shields in horizontal RPs
 - impedance reduction
The future: upgrades for AFP CMS-TOTEM and CT-PPS

- Finalise measurements at 8 TeV: measurement of ρ parameter, hard diffraction (jets, Z...) with CMS
- Elastic and total cross section measurements at 13 TeV using TOTEM and ALFA
- Special high β^* =2.5 km runs in order to access the Coulomb interference region foreseen in 2016
- In parallel, measurements of low and medium mass diffraction using high β^* runs in CMS-TOTEM: glueballs, jets, W bosons, vector mesons in SD and DPE, exclusive events...
- High mass diffraction using CT-PPS and AFP: sensitivity to new physics via anomalous couplings
Conclusion - Opening for discussion

- What impact have LHC results on Models? Islam et al., Maor at al., Soffer et al. revisited and refined their models

- Non exponential form of $d\sigma/dt$

- Could new measurements in the pipeline ($\rho...$) already lead to a better understanding?

- Which additional measurements should be performed at the LHC to have a better understanding of the elastic scattering mechanism?

- Broad diffractive program at the LHC for the future