Exclusive $\gamma \gamma \rightarrow l^+ l^-$ production at $\sqrt{s} = 7$ TeV with ATLAS experiment

arXiv:1506.07098

Oldřich Kepka Institute of Physics, Prague On behalf of the ATLAS Collaboration

July 2, 2015 Elastic and Diffractive Scattering, Corsica

Introduction

- High energy proton beams \rightarrow high probability initial state photon
- Use LHC as an effective $\gamma\gamma$ collider
- Very nice laboratory to study coupling of vector bosons
- Higher sensitivity to $\gamma\gamma \to WW$ in photon interactions than in inclusive measurements

• Measurement of dilepton production - standard candle for photon physics

- ▶ 2011 data $\mathcal{L} = 4.6 \, \text{fb}^{-1}$
- More data than in previous measurements but larger rate of pp collisions ($\langle \mu \rangle \sim 6)$
- Precise probe of photon induced production predictions

Dilepton exclusive production

- Elastic signal
 - Precise calculation using Equivalent photon approximation (elmag. formfactors)
- Single dissociation
 - Brase and Suri-Yennie structure function for proton dissociation
- Double dissociation
 - Resolved proton structure: $q \rightarrow q\gamma$, NNPDF2.3QED

- Modeling respectively by: Herwig++, LPAIR, Pythia8
- MC do not include absorbtive corrections due to QCD

Exclusive dielectron event

Event selection

- Same selection as in standard low-mass Drell-Yan measurement
- Isolated e^+e^- and $\mu^+\mu^-$ candidates

Variable	Electron channel	Muon channel
p_{T}^{ℓ}	> 12 GeV	$> 10 { m ~GeV}$
$ \eta^{\overline{\ell}} $	< 2.4	< 2.4
$m_{\ell^+\ell^-}$	$> 24 { m ~GeV}$	$> 20 { m ~GeV}$

- Enhance exclusive signal
 - \blacktriangleright Exclusive selection 2 tracks ($p_{\rm T}>400\,{\rm MeV})$ associated to vertex, vertex isolated
 - Veto Drell-Yan events
 - Require dilepton $p_{\rm T}^{ll} < 1.5~{\rm GeV}$
 - Alternative selection: acoplanarity $1 |\Delta \phi_{ll}|/\pi < 0.008$

Exclusivity requirement

- Exclusivity requirement: multijet, diboson, $t\bar{t}$ background negligible
- Drell-Yan modelled by POWHEG+PYTHIA6
 - Not reliable modelling of particle activity, overestimate by 50% for low multiplicity
 - Charged particle multiplicity measured in $70 \text{ GeV} < m_{l^+l^-} < 105 \text{ GeV}$ (corrected for PU and track reconstruction)
- Drell-Yan events re-weighted at particle level

Vertex isolation

- Exclusive event vertex required to be isolated $\Delta_{vtx}^{iso} > 3 \text{ mm}$
- Reject Drell-Yan events mostly split vertices - event with high particle multiplicity reconstructed with more than 1 vertex
- At cost of 26% of signal vertices due to additional *pp* interactions

Selection

- Drell-Yan suppression
- Signal selection $p_{\rm T}^{ll} < 1.5~{\rm GeV}$ thanks to low virtuality of incoming photons

Final selection

- 869 and 2124 events selected in $ee/\mu\mu$ channel
- Background (SD) approximately 50%
- MC does not include absorbtive corrections \rightarrow data \sim 80% of prediction

	,	$\gamma\gamma \rightarrow \ell^+\ell^-$	-	Z/γ^*	Multi-	Z/γ^*		Di-	Total	
Selection	Signal	S-diss.	D-diss.	$\rightarrow \ell^+ \ell^-$	jet	$\rightarrow \tau^+ \tau^-$	$t\bar{t}$	boson	predicted	Data
Electron channel $(\ell = e)$										
Preselection	898	2096	2070	1460000	83 000	3760	4610	1950	1560000	1 572 271
Exclusivity veto	661	1480	470	3140	0	9	0	5	5780	5410
Z region removed	569	1276	380	600	0	8	0	3	2840	2586
$p_T^{\ell^+\ell^-} < 1.5 \text{ GeV}$	438	414	80	100	0	2	0	0	1030	869
Muon channel $(\ell = \mu)$										
Preselection	1774	3964	4390	2300000	98 000	7610	6710	2870	2 420 000	2 422 745
Exclusivity veto	1313	2892	860	3960	3	8	0	6	9040	7940
Z region removed	1215	2618	760	1160	3	8	0	3	5760	4729
$p_{\rm T}^{\ell^+\ell^-} < 1.5 {\rm ~GeV}$	1174	1085	160	210	0	3	0	0	2630	2124

Signal extraction

- Binned likelihood fit of signal (exclusive) and background (single dissociation)
- Drell-Yan and double dissociation fixed
- Both exclusive and single dissociation requires scaling down:
 - $R_{\gamma\gamma \to e^+e^-}^{\text{excl.}} = 0.863 \pm 0.070$
 - $R_{\gamma\gamma \to \mu^+\mu^-}^{\text{excl.}} = 0.791 \pm 0.041$

$$\begin{aligned} R_{\gamma\gamma \to e^+e^-}^{\text{s-diss}} &= 0.759 \pm 0.080 \\ R_{\gamma\gamma \to \mu^+\mu^-}^{\text{s-diss}} &= 0.762 \pm 0.049 \end{aligned}$$

• Fitted scaling factors anti-correlated

Control distributions

- Apply scaling factors to MC, use $1-|\Delta\phi_{l+l-}|<0.008$ instead of $p_{\rm T}^{l^+l^-}<1.5{\rm GeV}$
- · Good modeling of data seen in both channels

Cross section measurement

• Cross section extracted by measuring suppression factor $R^{\rm excl.}_{\gamma\gamma\to l^+l^-}$, applied to prediction:

$$\sigma_{\gamma\gamma \to l^+l^-}^{\text{excl.}} = R_{\gamma\gamma \to l^+l^-}^{\text{excl.}} \cdot \sigma_{\gamma\gamma \to l^+l^-}^{\text{EPA}}$$

- Measurement performed in fiducial region
 - Includes extrapolation under Z peak

Variable	Electron channel	Muon channel
p_{T}^{ℓ}	$> 12 { m ~GeV}$	$> 10 { m ~GeV}$
$ \eta^{\overline{\ell}} $	< 2.4	< 2.4
$m_{\ell^+\ell^-}$	> 24 GeV	$> 20 { m GeV}$

- $\sigma^{
 m excl.}_{\gamma\gamma
 ightarrow e^+e^-}=$ 0.428 \pm 0.035 (stat.) \pm 0.018 (syst.) pb
- $\sigma^{
 m excl.}_{\gamma\gamma
 ightarrow\mu^+\mu^-}=$ 0.628 \pm 0.032 (stat.) \pm 0.021 (syst.) pb
- Measurement statistic dominated
 - Systematic uncertainty 4.3/3.3%
 - Statistic uncertainty 8.2/5.1%

Systematic uncertainties

Backgrounds

- Drell-Yan in particular reweighting charged particle multiplicity
- Double dissociation variation of NNPDF2.3QED
- Vertex isolation and pile-up modelling
- Electron measurement
- Luminosity
- Very precies measurement overall!

	Uncertainty [%]		
Source of uncertainty	$\gamma\gamma \rightarrow \mathrm{e^+e^-}$	$\gamma\gamma \rightarrow \mu^+\mu^-$	
Electron reconstruction			
and identification efficiency	1.9	-	
Electron energy scale			
and resolution	1.4	-	
Electron trigger efficiency	0.7	-	
Muon reconstruction efficiency	-	0.2	
Muon momentum scale			
and resolution	-	0.5	
Muon trigger efficiency	-	0.6	
Backgrounds	2.3	2.0	
Template shapes	1.0	0.9	
Pile-up description	0.5	0.5	
Vertex isolation efficiency	1.2	1.2	
LHC beam effects	0.5	0.5	
QED FSR in DY e^+e^-	0.8	-	
Luminosity	1.8	1.8	
Total systematic uncertainty	4.3	3.3	
Data statistical uncertainty	8.2	5.1	

Results comparison

- Summary plot: CMS measurement in different phase-space (lower dilepton masses)
- All measurement give consistent picture of proton absorbtive correction ~ 0.8

Interpretation

- Size of absorbtive correction can be explained from impact parameter picture
- Probability of non-interaction calculated from elastic amplitude, which is fitted to data
- Naively: proton do not dissociate if scattering at $b>2r_p$ (for a black disk)

$$f(\omega_1)f(\omega_1) \to \int \int n(\vec{b}_1,\omega_1)n(\vec{b}_2,\omega_2)P_{\text{non-inel}}(|\vec{b}_1-\vec{b}_2|)\mathrm{d}\vec{b}_1\mathrm{d}\vec{b}_2$$

Dyndal, Schoeffel, Physics Letters B, 741, 66

 Perhaps too simple, might be process dependent (see L. Harland-Lang talk on Tuesday)

Summary

- ATLAS first measurement of exclusive production
- Most precise measurement of two-photon dilepton production
- Measured absorbtive corrections consistent from different measurements
- arXiv:1506.07098

Backup

Fit results

• Fit of accoplanarity distribution

