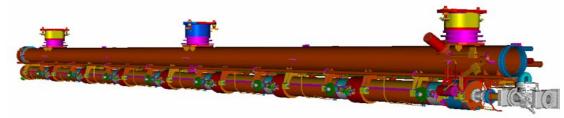
A European SCRF Infrastructure

Lutz.Lilje@desy.de

14.06.2006

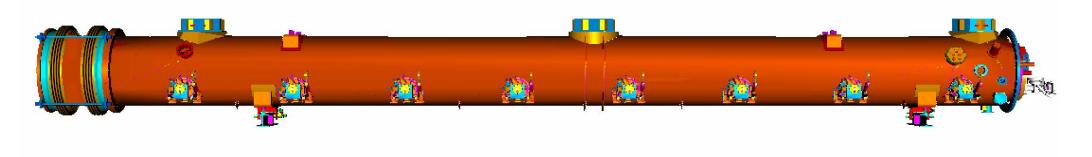
- Goals of the Infrastructure
 - ILC
 - Other projects
- Timeline
 - Phasing of work
- Needs for the Infrastructure

Research and Development


- GDE Discussions show that an effort is needed
 - To make ILC-gradients more reproducible
 - The baseline process is clear, but some parameters are yet to be determined (details of postelectropolishing rinses)
 - This is the work of the labs
 - Any step in Europe should be integrated in the larger R&D framework
 - Step toward a integrated systems test
 - Build a 4th generation module
 - At least the size of one RF unit, which determines the number of cavities to at least 30
 - Knowledge transfer to industry
 - Significant work is needed enabling industry to produce cavities on the level of the ILC gradients (see above)
 - After having worked out details, transfer this to industry
 - But Industry can do things today (and the more in 2007/8)
 - Large contribution of the XFEL
 - Fabrication, First EP can/should be done in industry
 - After results from the facility are available
 - Final preparation and tank welding in industry
 - Final step
 - Module assembly in industry
- Other projects
 - Access to state-of-the-art cavity preparation

Primary goal:

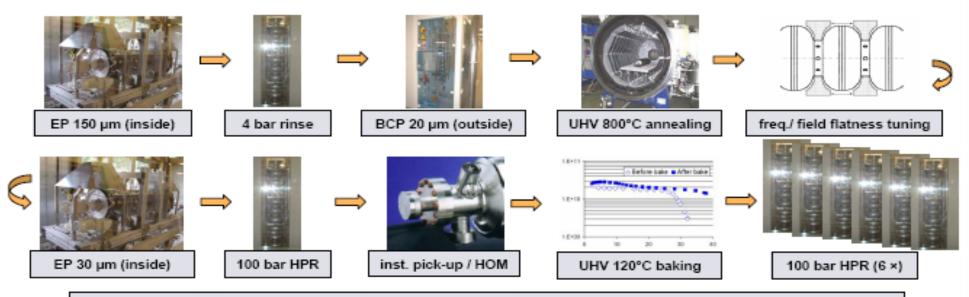
Production of ILC prototype modules (4th generation) in Europe


- Scope
 - Should include building all parts
 - Cavities
 - Couplers
 - Magnet
 - BPM
 - Cryostat vessel

15.06.2006

- Must include a next generation cavity preparation facility
 - Improve processes
 - Avoid bottlenecks

Lutz Lilje DESY -MPY-



Cavity Preparation Infrastructures Today

- Some infrastructure is available in Europe (not only DESY)
- Most setups are still R&D size
 - Often single-cell cavities
 - Small through-put
- Single-line of processing
 - No redundancy
- Have come to age
 - Materials
 - Overall layout needs significant re-work with today's knowledge
 - Electropolishing as the baseline process
 - required number of high pressure water rinses

Cavity Prep. (XFEL Industrial Production)

- 1. electro-chemical removal of a thick niobium layer (so-called damage layer) of about 150 µm from the inner surface
- 2. a rinse with particle free / ultra-pure water to remove residues form the electro-chemical treatment
- outside etching of the cavities of about 20 µm
- ultrahigh vacuum annealing at 800°C
- 5. tuning of the cavity frequency and field profile
- 6. removal of a thin and final layer of about 30 µm
- 7. rinsing with particle free / ultra pure water at high pressure (100 bar) to remove surface contaminants
- 8. assembly of auxiliaries (pick-up probe and HOM pick-up)
- baking at 120°C in ultra high vacuum
- 10. additional six times rinse with high pressure ultra-pure water (100 bar)

The European

X-Ray Laser Project 🔬

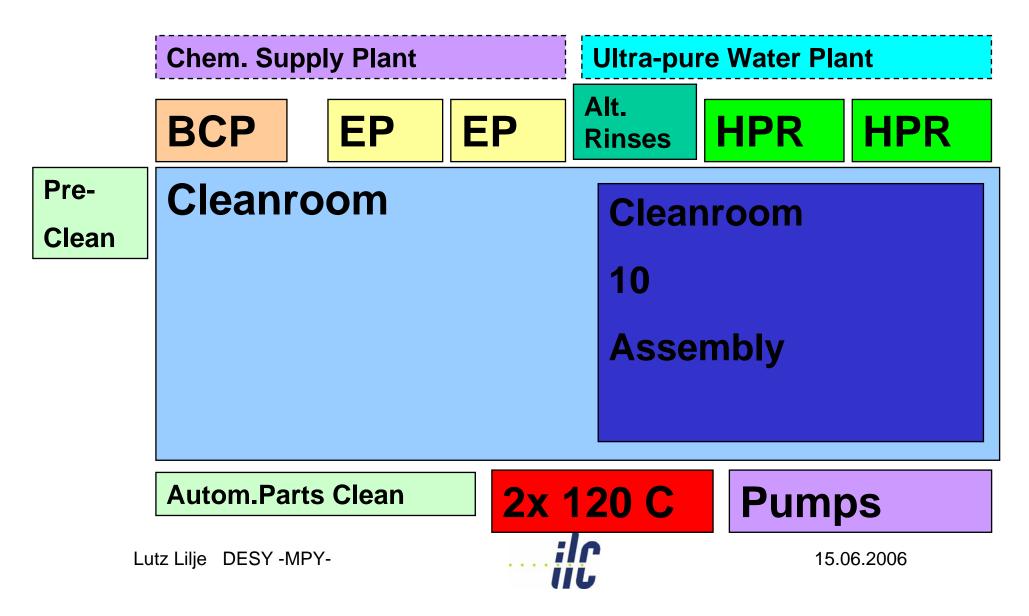
Next Generation Cavity Preparation Infrastructure I

Main Features

- Improved electropolishing
 - Focus to avoid sulphurus contamination
 - Redundancy
- Improve Final cleaning
 - Flexibility needed here e.g. alcohol rinses
- High pressure rinse (HPR)
 - Online particle count integrated in drain water line
 - Redundancy
- Cleaning of parts
 - Automation needed: screws used as example
- Improved/novel methods of QA/QC

Next Generation Cavity Preparation Infrastructure II

- Modular setup
 - Institutes get responsibility for part of the process (HPR design, EP design etc.)
- Redundant setup
 - 2 x EP,
 - 2 x HPR,
 - 2-3 120 °C bakeout stations
- Other infrastructure
 - Etching needed (e.g. outside cleaning)
 - designated 800°C furnace
 - Sufficient pump stations, etc.
- Optional
 - Dry-ice cleaning
 - Needs feasibility demonstration



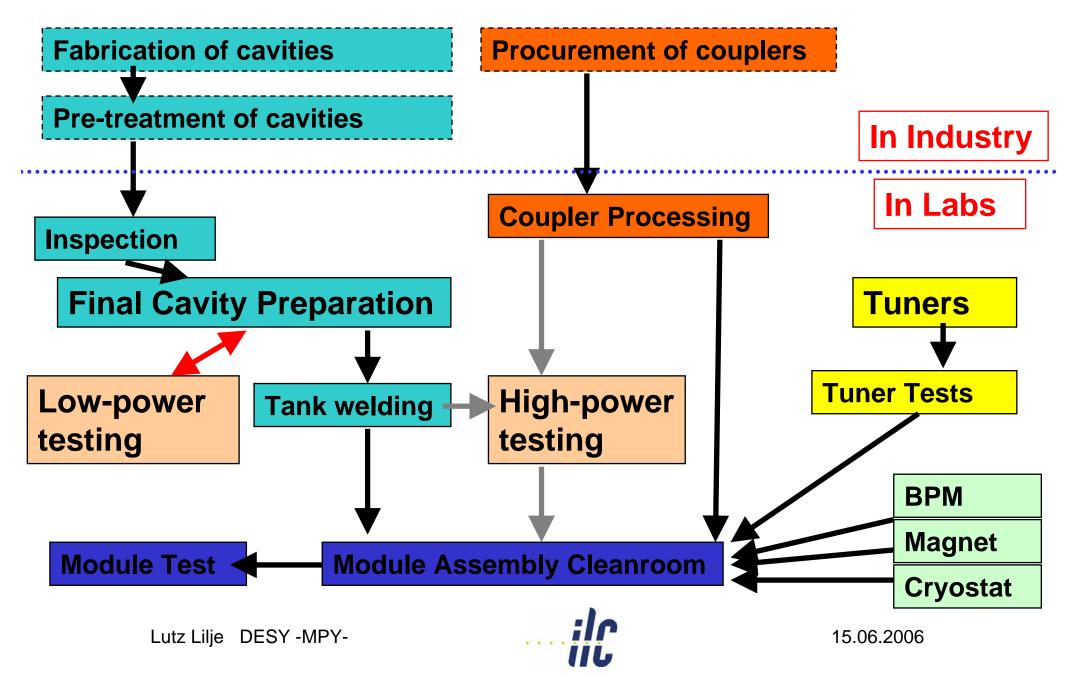
Tuning

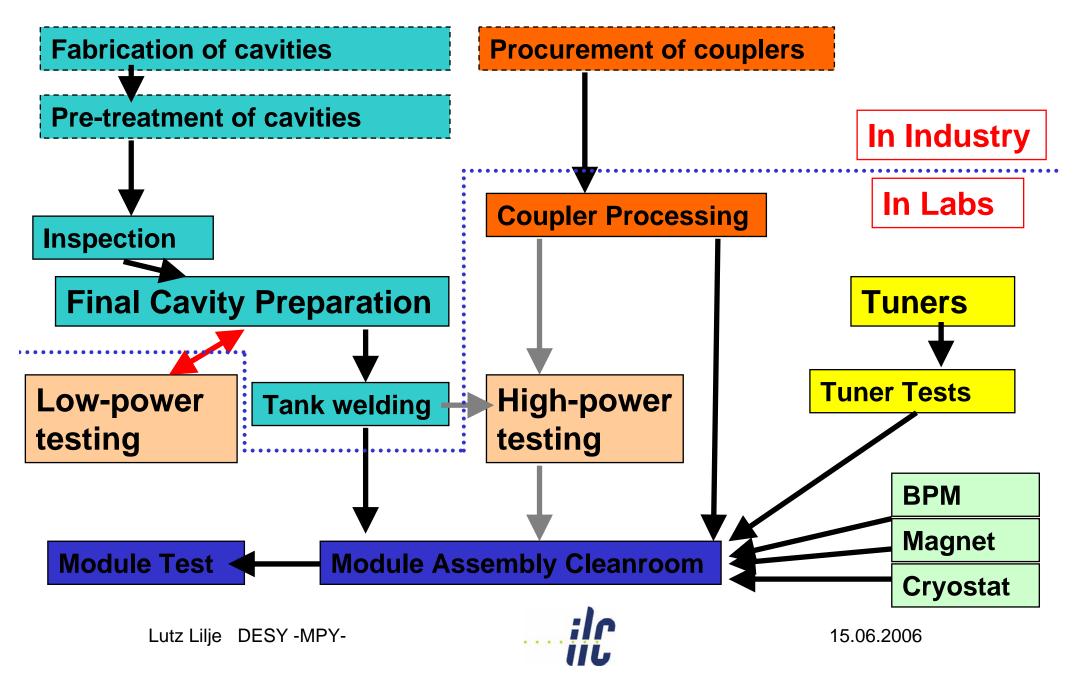
Preparation Facility

Layout of

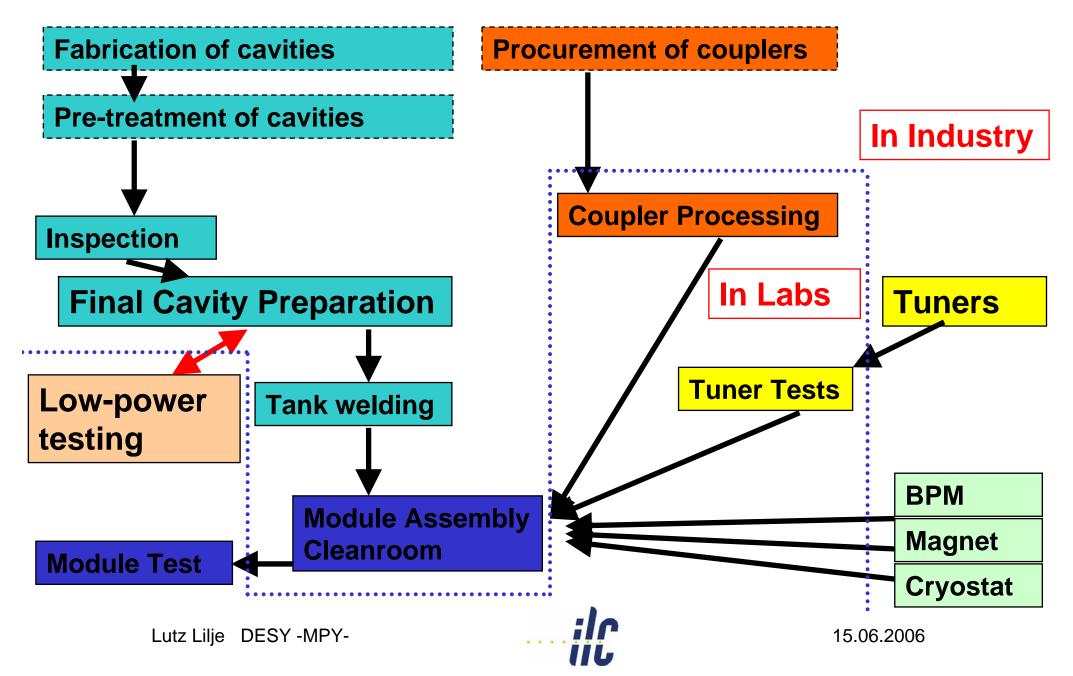
Time scales:

->2008


- Time scale would have this infrastructure running parallel to XFEL cryomodule production, which could provide 'mass production' feedback for foreseen ILC program.
- some of the design work will be done until end 2007 by ILC worldwide
- setting up of preparation infrastructure is most timeconsuming
 - This could partially start in 2007
 - if parts of TTF infrastructure can be used the cavity preparation can be started earlier
 - at CERN the adaptation of the infrastructure needs to be crosschecked but should be rather straight-forward


Timelines for R&D Infrastructure

	ILC Work	Other projects	Year
Setup phase	 Installation of infrastructure Procurement of parts (e.g. cavities) 	Define cavity shapes etc.	2007-2008
Research phase	 Use of preparation and test systems Defining the details of the preparation (e.g. rinsing parameters) 	Design of infrastructure (e.g. EP bench)	2008-2009
Transfer phase	Transfer parameters for final cavity preparation to industry	Installation of infrastructure	2009 - 2010
Industrialization phase	Module assembly in industry	Use of Infrastructure	2010+
Lutz Lilje DESY -MPY-			


Scheme of Cryomodule Production (Research phase)

Scheme of Cryomodule Production (Technology Transfer)

Scheme of Cryomodule Production (Industrialization Phase)

Implementation of a Facility

- Location Alternatives:
 - Makes sense to site this at existing TTF infrastructure here at DESY.
 - Additional manpower would be a pre-requisite
 - CERN
 - Available:
 - 2K cryogenic-infrastructure
 - Vertical Teststands
 - Module Teststands
 - Single-cell preparation infrastructure
 - Surface science department in-house
 - Needed
 - Infrastructure for multi-cells with redundancy
 - RF Power
- Manpower
 - Qualified manpower is a critical issue on all levels (engineers, technicians)
 - How 'free' could this expertise be in 2008+?
 - How much additional manpower could be made available?

Conclusion

- Such a facility is needed
- CERN is a clear option as some (costly) part of the infrastructure is there
 - Not to be forgotten: Some Know-how as well!
 - DESY can be an alternative
- Evaluation is needed on who can provide what
 - Need to start making a 'shopping list'
- Other projects should come up with some rough sizes of their components when facility design starts

Lutz Lilje DESY - MPY-

Lutz Lilje DESY -MPY-

15.06.2006

Backup slides

- Design goals of components
- Possible implementations
- Has been discussed in Orsay

Sketch of possible programme:

- Component design in framework of worldwide effort
 - Some design work might be finished by 2007
 e.g. cryostat vessel
 - but this should not stop people stop from thinking about sub-components like magnet and cold BPM
- Details...

- Goals ILC Cryomodule Design

- 4th generation module
 - Quadrupole in the center
 - Shorter cavity spacing
- Module assembly capability
- Module testing capabilities
- Prototyping of cryostat vessel in European industry
- Implementation:
 - Finish design work as collaboration of FNAL, INFN, DESY,...
 - ILC design finished in 2007?
 - Assembly of modules
 - Need a cleanroom for string
 - » Could use refurbished CERN cleanroom in SM18
 - » could be at TTF?
 - Test facility without beam
 - Could refurbish CERN infrastructure in SM18
 - Could be extension to XFEL module test hall, then use single module test stand for ILC
 - If Beam test is needed somewhere (e.g. HOM damping), could be just a probe beam.

High-quality cavity production and preparation including fullpower test

- Cavity design
 - Goals:
 - Compact with shortened beam tubes
 - Cavity shape options
 - Standard
 - Low-Loss
 - Implementation
 - ILC LL
 - complete design available done at SLAC, DESY and others
 - Initial tests will be available
- Material options
 - Goals:
 - Large-grain or single-crystal
 - Standard material
 - Implementation
 - Built 30 ILC-cavities and test

High quality cavity production ctd.

- Cavity preparation
 - Goals
 - Improve preparation process
 - Improve EP (is a must...)
 - Etching needed (e.g. outside cleaning)
 - Improve Final cleaning
 - High pressure rinse (HPR)
 - » Online particle count integrated in drain water line
 - Dry-ice cleaning?
 - » Needs feasibility demonstration
 - Cleaning of parts
 - » Automation needed: screws used as example
 - Improved/novel methods of QA/QC
 - Implementation
 - Setup of new infrastructure
 - » DESY: Independent of TTF
 - » CERN: partial refurbishment might be an option
 - Modular setup
 - » Institutes get responsibility for part of the process (HPR design, EP design etc.)
 - Redundant setup
 - » 2 x EP,
 - » 2 x HPR,
 - » 2-3 120 °C bakeout stations
 - designated 800°C furnace
 - Sufficient pump stations, etc.

High quality cavity program ctd.

- Cavity testing capabilities
 - Goals :
 - Low-power and high-power individual cavity tests
 - Implementation
 - DESY: Extension of XFEL infrastructure or use TTF
 - CERN: Make SM18 1.3GHz compatible
 - Minor work cryostats
 - Improve pumps for 2K ?
 - RF system esp. for Pulsed operation
 - » obtain MBK from America

Cavity Auxiliaries

- TTF-III coupler

- Goals
 - Lower cost
 - Even faster processing
- Implementation
 - Continue work at LAL Orsay
 - Full synergy with XFEL
- Compact Tuner design
 - Goals
 - Develop compact tuner
 - Including fast tuning (e.g Piezo)
 - Implementation
 - Blade tuner at INFN
 - Compact lateral tuner at Saclay ? needs confirmation

Lutz Lilje DESY -MPY-

15.06.2006

ILC magnet design

- Goals
 - Full design to ILC specs
 - Follow discussions on ILC issues
- Implementation
 - Continue work with CIEMAT
 - Acquire magnets in America?

ILC BPM design

– Goals

- More compact re-entrant
- Eventually integrated (closely attached) to quadrupole
- Implementation
 - Basic layout XFEL-like ?
 - XFEL Resolution insufficient for ILC
 - Continue CEA work
 - Need compact design

From Cavity to Modules

- Step 1 inspection of incoming cavities
 - Optical inspection
 - tuning of cell for field flatness (frequency)
 - mechanical measurements (length/ eccentricity)
 - Optical inspection of surface
- Step 2 preparation for acceptance/ vertical test
 - Damage layer removal
 - Annealing
 - Final surface treatment
 - assembly in class 10 Cleanroom
 - High pressure rinsing with Ultra pure water @ 100bar -
 - assembly of variable input power antenna for vertical test
 - Assembly to test insert
- Step 3 Vertical TEST

From Cavity to Modules ctd.

- Step 4 Preparation for Module
- Tank welding
 - Installation of in situ field measurement device
 - Welding of Nb to Ti connections (EB/ Bellows & Inter-connection ring)
 - Tuning of field profile and frequency
 - Helium vessel welding (TIG)
- Final preparation of dressed cavities
 - Removal of in situ field profile device
 - Assembly of HOM Coupler
 - High pressure rinsing
 - Assembly of Power coupler
- Step 5 Module assembly
 - Horizontal test of cavity and all accessories (Chechia)
 - Module assembly

Estimation of Sizes for Preparation Facility

- Precleaning
 - 1x1x2
- Ultrasonic
- 1 x 1 x 3
- Pure water rinse
 - 1x1x3
- EP (2x)
 - EP table area
 - 2,5 x 4 x 3
 - Allow for working on both sides
- BCP
 - Etching Enclosure
 - 1x1x2
- HPR (2x)
 - Housing with hole for cane
 - 1 x 1 x 4
- Alternate rinse (2x)
 - Like etching enclosure
 - 1 x 1 x 2
- Area for pumping
 - In cleanroom
 - 3 x 2
 - Outside
 - 2 x 2
- Cleanroom 100
 - 8 x 15 ?
- Cleanroom 10 (2-3x)
 - 2.5 x 2.5
 - Chemical Supply
 - 6 x 4 x 3 Ultra-pure water Plant
 - Ultra-pure water Plant – 4 x 4 x 3
- Parts clean

٠

٠

- 2 x 2
- 120 Bake (2x)
 - 1 x 1 x 2
 - Luiz Line outside clean por?

