Meeting on A Possible European SC-RF Infrastructure

CERN, 14 June 2006

INFN-Italy SC-RF Infrastructures complementary to a possible European SC-RF Infrastructure

Carlo Pagani

University of Milano and INFN

SC-RF Infrastructures in Italy at:

LNL - Laboratori Nazionali di Legnaro dell'INFN

(Material from Vincenzo Palmieri)

Sezione INFN di Genova

(Material from Renzo Parodi)

LASA - Sezione INFN di Milano

LNL: Ion Accelerator Complex

AN2000	CN		
>>> General Information >>>> Beam Time Schedule >>> Call for Proposals	Seneral Information Select Time Schedule Select for Proposals		
 Mainly used for solid state physics and applied physics experiments. Electrostatic accelerator, Van de Graaff type. Single stage-Belt charging system. Maximum terminal working voltage 2.5 MV. Available accelerated ions: ¹H, ⁴He single charged Continuous beam. Maximum Ion Energy: 2.5 MeV 1 experimental hall; 5 beam lines among which one dedicated to a microbeam facility. 	 Mainly used for interdisciplinary research, neutron physics research and advanced educational purposes. Electrostatic accelerator, Van de Graaff type. Single stage-Belt charging system. Maximum terminal working voltage: 7 MV. Available accelerated ions: 1,2H, 3He, 4He single and double charged Continuous and pulsed beam. Maximum Ion Energy: 7 MeV for single charged 14 MeV for ⁴He⁺⁺ 8 MeV for ¹⁵N⁺⁺ 1 experimental hall; 7 beam lines. 		
TANDEM-XTU	ALPI		
3 General Information 3 Beam Time Schedule 3 Call for Proposals 3 Deadlines 3 List of Experiments 3 Reports			
 Mainly used for fundamental heavy-ions nuclear physics experiments. Electrostatic accelerator, Van de Graaff type. Double stage with two stripper stations (one at the terminal and one in the High Energy stage) - Laddertron charging system. Maximum working voltage: 15 MV. Available accelerated ions range from ¹H to ¹⁹⁷Au (see list with available currents). Continuous and pulsed beam. 	 Mainly used for fundamental heavy-ions nuclear physics experiments at intermediate energy. Linear superconducting quarter-wave resonant cavities accelerator. At present ions are injected by Tandem Superconducting material: Lead and Niobium. Accelerated Ions: from ²⁸Si to ¹⁹⁷Au. Energy: about 20 MV multiplied the ion charge state. The total output energy of ions emerging from the 		
 Energy: from 30 MeV/AMU for 1H to about 1.5 MeV/AMU for 197Au. 3 experimental halls; 10 beam lines. At present the Tandem-XTU acts also as injector for ALPI. 	Tandem-Alpi complex is the sum of injection energy (Tandem acting as injector) and ALPI energy. Hence the total energy of the complex is about 35 x charge state (MeV). Experimental halls and beam lines: the same ones of Tandem-XTU.		

TABLE OF TANDEM-ALPI REPRESENTATIVE BEAMS

Beam	E [MeV] - (1 foil) with the most probable charge state	Average current on target [pnA] (1 foil)	E [MeV] (2 foils)
¹² C	251	10	288
¹⁶ 0	303	30	342
³² S	461	18	586
⁴⁸ Ca	457	1	648
⁵⁸ Ni	555	5	794
⁶⁵ Cu	543	2	794
⁷⁴ Ge	519	2	838
⁸² Se	559	1	880
90Zr	526	1.5	976
¹⁰⁴ Ru	612	1	1008

TABLE OF CURRENTLY AVAILABLE PIAVE-ALPI BEAMS

Beam	Maximum energy [MeV]	Beam Current on target [pnA]
²² Ne ⁴⁺	147	10
⁴⁰ Ar ⁹⁺	330	4÷10
⁸⁴ Kr ¹⁵⁺	555	5÷10
¹³² Xe ¹⁸⁺	675	2

LNL: SC-RF Cavities Developed

β<1 resonators, beta ranging from 0.03 to 0.5 many different shapes and sizes

LNL: SC-RF Infrastructures

BCP and EP plant to treat copper

Ultrasonic Cleaning facility

chemical Treatment of a guarter-wave resonator

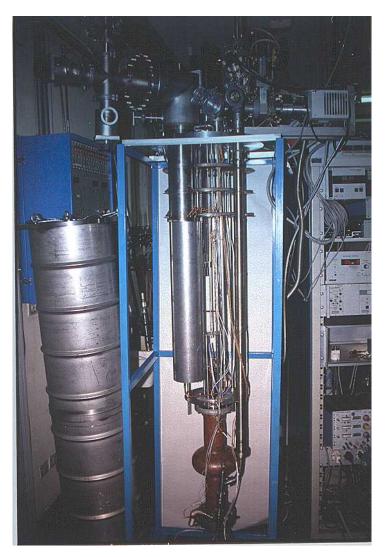
Ultra-pure water system (1200 l/h - 18 $M\Omega$ cm)

Carlo Pagani

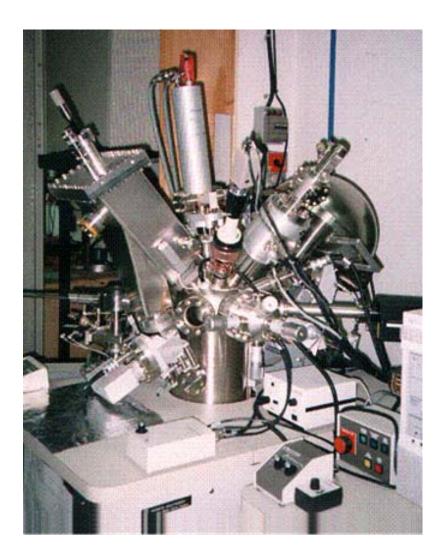
LNL: R&D on single-cell 1.3 GHz cavities

LNL: Film Deposition Systems

Large experience on film deposition


- Magnetron sputtering of Nb on Cu
- Thin film cathodic arc deposition
- High Tc exotic film deposition

LNL: Vertical cryostats and inserts


- Variety of cryostats and inserts for SC-RF tests
- The largest cryostat can accommodate a 9-cell ILC cavity: $h = 3 m, \Phi = 500 mm (60 W, 1.8 K)$
- LNL Priority on ALPI and ion accelerators

Genova: Surface treatment and analysis

- Basic measurements on RF properties of Niobium and Nb based superconductors
- XPS-Auger apparatus dedicated to surface analysis of SC samples of Niobium and niobium on copper, treated in the lab.
- Test of 3GHz cavities to verify surface preparation receipts
- Long tradition in Multipactoring calculation (pioneering work from Genova in this field)

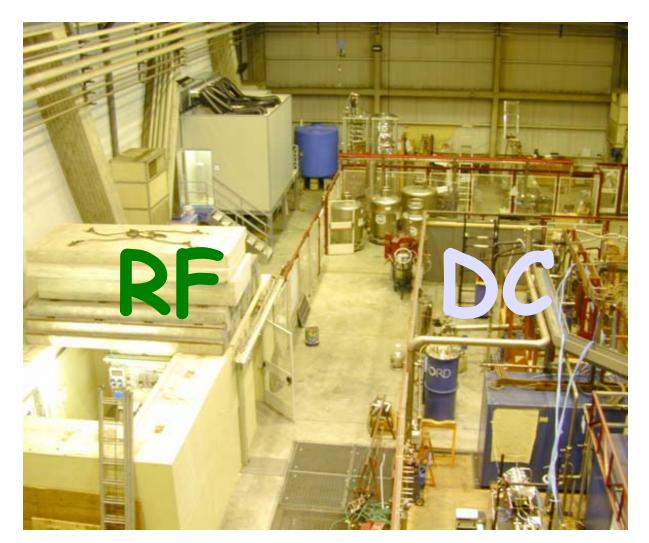
LASA

LASA = Laboratorio Acceleratori e Superconduttività Applicata

Built in meddle Eighties for the construction and commissioning of the 800K Superconducting Cyclotron now in operation at INFN-LNS

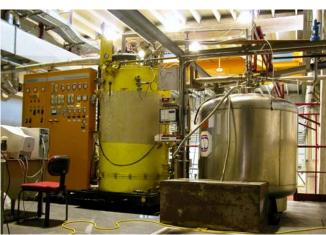
~ 40 People: Researchers, Technician and Students

Since 15 years dedicated to contribute in big international accelerator projects based on Superconducting components: Magnets and Cavities


SC-RF Infrastructure CERN, 14 June 2006

Carlo Pagani

LASA: SC Infrastructures

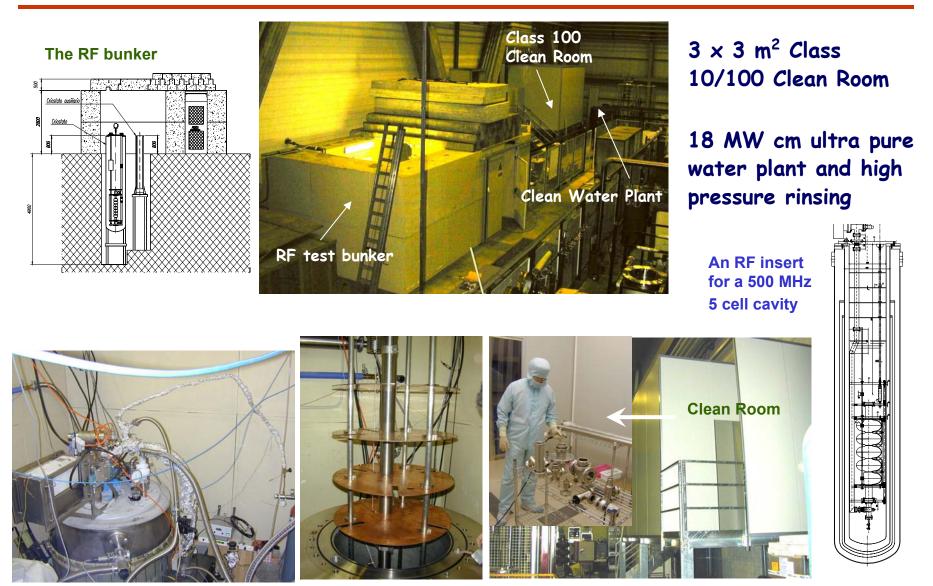

LASA SC area and general services

- Experimental area:
 2000 m², served by a
 50 t crane.
- Installed electrical power: 1.6 MVA
- · 100/ Mbit/s 1 Gbit LAN
- Machine workshop
- · Radiochemistry Lab.

LASA: Cryogenics

- He liquefier: 40 l/h (with LN₂ precooling)
- Liquid Storage: 4.000 l
- LHe distribution lines
- He Gas Recovery and storage:
 - Max recovery rate: 60 m³/h (NTP)
 - 1.000 m³ storage balloon
- He purification system
- 15 bar He gas storage:
 2.800 m³ (NTP)

40 l/h He liquefier



Main He compressor

He gas storage

LASA: SRF Cavity Test Facility

LASA: U-Pure Water and HPR Systems

My Conclusions

- LNL: fully dedicated to ALPI and to the development of ion accelerators for nuclear physics as SPES, Eurisol
 - LNL prefers contributing to R&D programs on SRF basics
- Genova: since a few years concentrated its SC activity on magnets and gravitational wave detectors, de facto abandoning SC-RF.
 - In case of an European infrastructure Genova is willing to contribute with its surface analysis equipment and experience
- LASA: 15 year experience in contributing, with Industry, to large accelerator projects based on Superconducting RF: LEP, LISA/ARES, TTF, ADS/TRASCO, SNS, SPL, etc.
 - The existing SC-RF infrastructure is tuned to be complementary to larger infrastructures
 - The SRF group at INFN LASA is strongly supporting the new European infrastructure at CERN.