Impact study of Arc UFO Events at 6.5 TeV

Thanks to

B. Auchmann, A. Lechner, W. Riegler, S. Rowan,

H. Schindler, R. Schmidt, F. Zimmermann

MPP Meeting - 16/11/2014

Outline

- Introduction/Motivation
- Impact Study
 - Overview of Study
 - Explanation of Numerical Model
 - Monte Carlo Results
- Conclusions

A nice picture of some dust

T. Bar CERN-THESIS-2013-233

Introduction

- Impact study of UFO Events at 6.5 TeV
 - Why do we care?
 - Due to the increased energy and reduced quench margins, it is predicted that such an event is more likely to cause a beam dump at 6.5 TeV, ultimately affecting availability.
 - What is our goal?
 - Attempt to numerically simulate such an event, including the corresponding BLM signals, to estimate the probability of UFOs resulting in a beam dump at 6.5 TeV.

So what exactly is an "UFO event"?

- An accepted interpretation of a UFO event:
 - A macroparticle (dust) falls from the top of the beam screen with gravity.
 - The macroparticle is subsequently ionized due to elastic collisions with the beam and the release of the inherent 'knock-on' electrons.

So what exactly is an "UFO event"?

An accepted interpretation of a UFO event:

- The now positively charged macroparticle is subsequently repelled away from the beam due to its electric field
- 4. Note that for the duration of the UFO-to-beam interactions, there may be significant losses due to inelastic collisions, resulting in a beam dump and or magnet quench!

Are such events common?

 No. of UFO events have been seen to exceed 10+/hour with notable increases after long shutdowns and or with an increase in beam frequency

Impact Study Overview

- New BLM Positions! Full Arc Coverage!
- Shown is the **BLM 'response'** at 6.5 TeV for a given longitudinal location along a typical arc cell, **FLUKA**.
- The **BLM 'response'** is the signal produced from a **single proton to Carbon Nucleus collision** and such the **BLM 'signal' is the product of the response and the loss rate**

• The following shows the concise **step-by-step processes** involved in the study:

STEP 1: Define Input Parameters

Other inputs include: material properties and system constants (energy dispersion, LHC circumference for e.g.)

• The following shows the concise **step-by-step processes** involved in the study:

STEP 1:

UFO Simulation							
E [TeV] =	6.5		3				
$\epsilon_n [\mu m] =$	2.4		3				
N _b [I _b [1	າpເ	It Parameters					
R [µm] =	10.	-	3				
s [m] =	10.		3				
x [mm] =	0.1		1				

STEP 2: Define Input Distributions

- Longitudinal Location: Uniform
- Transverse Location: Uniform (within reasonable limits)
- UFO Radius: Unknown
 - (fitted to match 4 TeV results using an accepted parameter range of R=1-100um. Range taken from SM12 dust study, see T. Bar CERN-THESIS-2013-233)

• The following shows the concise **step-by-step processes** involved in the study:

The following shows the concise **step-by-step processes** involved in the study: ٠

STEP 4: Calculate BLM Signals

• The following shows the concise **step-by-step processes** involved in the study:

STEP 5: Repeat Step 1:4 until study buffer is collected ~1800, after filtering criteria.

- RS(640us) > 2x10⁻⁴ Gy/s

• The following shows the concise **step-by-step processes** involved in the study:

STEP 1:

If not

STEP 5:

Numerical Model

Main Considerations

- Main considerations for the numerical model were as follows:
 - Input Parameters (covered)
 - Input Distributions (covered)
 - Beam Size
 - Electric Field Influence
 - Macroparticle Charge Rate
 - Beam Loss Rate
- It is of note that due to the amount of required simulations and model complexity, **memory efficiency and parallelization** were important aspects.
 - Model takes ~1hr to run a 10,000 iteration Monte Carlo simulation (on a 16 core Xeon I might add)

Beam size/shape

- The variation of **beam size/shape** along the arc was taken into account
- It is implement via a parabolic fit beta function, fit shown below:
- Beam size subsequently attained from the common relation. Depicted below

Electric Field Influence

 The variation in beam size/shape along the Arc naturally influences the electric field. Shown is the field variation across a typical half-cell. Field is field modelled following the Bassetti-Erskine formula (2D Gaussian beam).

Macroparticle Charge Rate (1/4)

- Previous studies have also attempted to model UFO-to-beam interactions, Zimmermann circa 1993-2011
- All studies focused on a charge rate equation derived from a formula for the distribution of sufficiently high-energy 'knock-on' electrons within a solid.

$$\dot{Q} = \frac{2N_{\rm p}fR^3\pi N_{\rm A}r_{\rm e}^2m_{\rm e}c^2\rho}{3\sigma_x\sigma_yT_{\rm min}(Q,R)M_{\rm u}} e^{-\frac{x^2}{2\sigma_x^2}-\frac{y^2}{2\sigma_y^2}}.$$
 Derived from:
$$\frac{\partial^2 N}{\partial T\partial s} = 2\pi r_{\rm e}^2m_{\rm e}c^2z^2n\frac{1}{\beta_{\rm R}^2}\frac{F(T)}{T^2}$$

Review of Particle Properties, 1992-1993 K. Hikasa et al. Phys. Rev. D 45 1992

 This study focuses on amendments to the minimum energy factor, T_{min}(Q,R), and the implications on 6.5 TeV predictions.

CERN

Macroparticle Charge Rate (2/4)

- **Ionization occurs when 'knock-on' electrons have sufficient energy** to travel at least the minimum distance to the edge of the macropartical
- Tmin can be described as the sum of the Coulomb potential and the "escape energy", i.e., the energy required to travel the minimum distance
- The 'escape energy' is determine by two factors:
 - The **'practical range'** of an electron within a specific material for a given energy, defined as shown:

$$r(T) = \frac{AT}{\rho} \left(1 - \frac{B}{1 + CT} \right)$$

Particle Detection with Drift Chambers W. Riegler et al, 2008

Where: A, B & C are empirical constants

Macroparticle Charge Rate (3/4)

 Shown is a depiction of the possible perpendicular scattering paths for knockon electrons involved in calculating the average distance to the edge from any given location within a spherical macroparticle.

Radial Integral across: Azimuthal scattering angles

CERN

Macroparticle Charge Rate (4/4)

- Well? Does it work?
- Shown, is a direct comparison of the ionization charge produce by a single incident high-energy proton colliding with an initially neutral Si sphere.
- Numerical results show a reasonable agreement with simulations carried out in Garfield++ (assumed to be accurate – software used in detectors).

Beam Loss Rate

- The proton loss rate can be defined as the integrated number of interactions across the macroparticles 'flight path', shown below.
 - Is a function of No. protons, beam shape, UFO size and material

$$\begin{split} \dot{N}_{\rm p} &= -\int_{\mathscr{A}} \int_{\mathscr{S}} J(x,y) \Sigma_{\rm int} \, \mathrm{d}x \, \mathrm{d}a = -\frac{2N_{\rm p} f \sigma_{\rm iel} R^3 N_{\rm A} \rho}{3\sigma_x \sigma_y A M_{\rm u}} \mathrm{e}^{-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}} \mathrm{.} \end{split}$$
 Where:

$$\Sigma_{\rm iel} &= \sigma_{\rm iel} \rho_A, \qquad \rho_A = \frac{N_{\rm A} \rho}{A M_{\rm u}}, \qquad \begin{array}{l} \text{Same as Zimmermann} \\ \text{model, but with } \sigma_{iel} \text{ taken} \\ \text{from FLUKA} \end{array}$$

'macroscoptic section' = nucleus interaction cross-section * atomic density

 As the macroparticle begins to interact with the beam, losses are produced due to the inelastic collisions.

And with that we have all the pieces of the puzzle!!!

Numerical Model Results

A Typical UFO Event Simulation

• Shown is the **flight path and loss rate of a typical UFO Event** simulate with the numerical mode.

2012 Buffer Data vs Numerical Monte Carlo

- Shown is the comparison between 4 TeV data measured through 2012 and the results of the numerical model Monte Carlo.
- Numerical Model results are fit to be within very good agreement within 4 TeV measured data using a reasonable parameter ranges/distributions.

2012 Buffer Data vs Numerical Monte Carlo

- Shown is the comparison between 4 TeV data measured through 2012 and the results of the numerical model Monte Carlo.
- Numerical Model results are fit to be within very good agreement within 4 TeV measured data using a reasonable parameter ranges/distributions.

6.5 TeV Monte Carlo Results

6.5 TeV Numerical Model Monte Carlo

- Shown is the results of a 6.5 TeV Monte Carlo for a given fit radius distribution
- Recall aforementioned 'Ad hoc factor' for quench level uncertainty

6.5 TeV Numerical Model Monte Carlo

- Shown is the results of a 6.5 TeV Monte Carlo for a given fit radius distribution
- Recall aforementioned 'Ad hoc factor' for quench level uncertainty

6.5 TeV Numerical Model Monte Carlo 25ns?

- Shown is the results of a 6.5 TeV Monte Carlo for a given fit radius distribution
- Recall aforementioned 'Ad hoc factor' for quench level uncertainty

CERN

Results Overview

• Table of results:

	BLM Positions	No. of Iter	No. of UFOs	No. of Trips
4 Tev - 50ns	Old	10000	740	1-2
6.5 TeV - 50ns - Adhoc 4	New	10000	1060	1-3
6.5 TeV - 50ns - Adhoc 1	New	10000	1060	10-30
6.5 TeV - 25ns - Adhoc 4	New	10000	898	0-2

• Putting that into little perspective (take with a pinch of salt):

Consider 16 ufo/hr and an 8 hr/day LHC uptime (~35% availability)...

50 ns Results predict:

- Ad hoc 4 => ~1-3 trips/7 days
- Ad hoc 1 => ~10-30 trips/7 days

Let's hope QP3 was indeed wrong!

Conclusions/Further Work

- Numerical model constructed and Monte Carlo simulations carried out
- Model takes into account **longitudinal beam variation** and **re-absorbtion** of scattered 'knock-on' electrons during interaction
- Model allows for the first time an impact study of the UFO threat to availability at 6.5 TeV
- 4 TeV Monte Carlo results can be fit within very good agreement to measured data using only acceptable parameter ranges
- 6.5 TeV predictions show that the probability of a trip occurring is in the order of 0.1%/ufo
 - Are these numbers troublesome? I'll leave that conclusion up to you! ③
- Studies into the impact on availability, avoidable trips and mitigation strategies, such as defender bunches and in planning or have already begun!

Thanks for listening!!

Appendix/Parametric Studies

Loss Rate vs Radius – Various Materials

Loss Rate vs Long Location – Various Radii

Loss Rate vs Beam current – Diff Energies

Loss Rate vs No. of bunches – Varying Emittance

Loss Rate vs Radius – varying trans Loc

Defender Preliminary - Various emittances/No. of Defenders

