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Abstract. A detailed analysis of transverse momentum spectra of several identified hadrons in high energy
collisions within the canonical framework of the statistical model of hadronization is performed. The study
of particle momentum spectra requires an extension of the statistical model formalism used to handle
particle multiplicities, which is described in detail starting from a microcanonical treatment of single
hadronizing clusters. Also, a new treatment of extra strangeness suppression is presented which is based
on the enforcement of fixed numbers of ss̄ pairs in the primary hadrons. The considered center-of-mass
energies range from � 10 to 30GeV in hadronic collisions (πp, pp and Kp) and from � 15 to 35GeV in
e+e− collisions. The effect of the decay chain following hadron generation is accurately and exhaustively
taken into account by a newly proposed numerical method. The exact pT conservation at low energy and
the increasing hard parton emission at high energy bound the validity of the presently taken approach
within a limited center-of-mass energy range. However, within this region, a clear consistency is found
between the temperature parameter extracted from the present analysis and that obtained from fits to
average hadron multiplicities in the same collision systems. This finding indicates that in the hadronization
process the production of different particle species and their momentum spectra are two closely related
phenomena governed by one parameter.

1 Introduction

The idea of a statistical approach to hadron production in
high energy collisions dates back to the ’50s [1] and ’60s
[2] and has recently been revived by the observation that
hadron multiplicities in e+e− and pp collisions agree very
well with a thermodynamical-like ansatz [3–5]. This find-
ing has also been confirmed in hadronic collisions, and it
has been interpreted in terms of a pure statistical filling of
multi-hadronic phase space of assumed pre-hadronic clus-
ters (or fireballs) formed in high energy collisions, at a crit-
ical value of the energy density [5–7]. In this framework,
temperature and other thermodynamical quantities have
a purely statistical meaning and do not involve the exis-
tence of a hadronic thermalization process through mul-
tiple collisions on an event-by-event basis. Stated other-
wise, statistical equilibrium is an intrinsic feature of the
hadronization process and hadrons are directly created in
such a state [5–7], as was envisaged by Hagedorn [8].

So far, this proposed statistical cluster hadronization
model has mainly been tested against the measured abun-
dances of different hadron species for a twofold reason.
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Firstly, unlike momentum spectra, these are quantities
which are not affected by hard (perturbative) QCD dy-
namical effects but are only determined by the hadroniza-
tion process; indeed, in the framework of a multi-cluster
model, they are Lorentz invariant quantities which are in-
dependent of the cluster’s overall momentum. Secondly,
they are fairly easy to calculate and provide a very sen-
sitive test of the model yielding an accurate determina-
tion of the temperature. However, in order to establish
the validity of the model, it is necessary to test further
observables and to assess their consistency with the re-
sults obtained for multiplicities. One of the best suited
observables in this regard is the transverse momentum of
the identified hadrons (where transverse is meant to be
with respect to the beam line in a high energy hadronic
collision, and the thrust or event axis in high energy e+e−
collisions) because, amongst all projections of the particle
momentum, this is supposed to be the one most sensi-
tive to hadronization or, conversely, the least sensitive to
perturbative QCD dynamics.

Actually, it has been known for a long time that trans-
verse momentum spectra follow a Boltzmann distribu-
tion in hadronic collisions and this very observation was
pointed out by Hagedorn as a major indication in favor
of statistical hadron production [9]. It must be empha-
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sized that the prediction of a thermal-like shape in prin-
ciple only applies to particles directly emitted from the
hadronizing source, whereas the measured spectra also in-
clude particles produced by the decays of heavier hadrons.
Yet, due to the involved calculations at play, most analy-
ses do not take into account the distortion of the primor-
dial hadronization spectrum induced by hadronic decays
and try to fit the data straight through it. This problem
has been discussed in the literature [10] and an analyt-
ical calculation has been developed to take into account
the effect of two and three body decays [11,12], which has
then been used both for pp [12] and heavy ion collision
[11–14] including most abundant resonances. In this pa-
per we introduce a new method allowing one to rigorously
and exhaustively determine the contribution of all particle
decays. Thence, by taking advantage of this technique, we
have performed an analysis of many measured transverse
momentum spectra of identified hadrons in a wide range
of center-of-mass energies for several kind of collisions.

This paper is organised as follows: in Sect. 2 the sta-
tistical hadronization model is described in detail start-
ing from a basic microcanonical treatment of clusters. In
Sect. 3 the analytical formulae for transverse momentum
spectra of hadrons within the statistical hadronization
model are derived whilst in Sect. 4 they are worked out for
the primary and secondary component separately and the
numerical method used to calculate them is described. In
Sect. 5 and 6 the data analysis is presented and discussed.
Conclusions are drawn in Sect. 7.

2 Statistical hadronization model

The statistical hadronization model assumes that in high
energy collisions, as a consequence of strong interaction
dynamics, a set of colour singlet clusters (or fireballs)
endowed with mass, volume, internal quantum numbers
and momentum, whose distribution is governed by the
dynamical stage of the process, is formed. These clus-
ters are supposed to give rise to hadrons according to
a pure statistical law in the multi-hadronic phase space
defined by their four-momentum, volume and quantum
numbers. This approach differs from another popular clus-
ter hadronization model [15] mainly because clusters are
provided with a volume, so that hadron production is gov-
erned by proper phase space rather than relativistic mo-
mentum space. In this framework, the use of statistical
mechanics and thermodynamical quantities, such as tem-
perature, which needs a spatial dimension besides momen-
tum space in order to be meaningful, is allowed. We em-
phasize once more that the introduction of such quantities
does not entail any thermalization process of hadrons af-
ter their formation and that statistical equilibrium simply
means that all final available quantum mechanical states
are equally likely.

In [5,16] the statistical hadronization model was de-
scribed within a canonical framework, with clusters char-
acterized by temperature and volume instead of mass and
volume. Therein, it was shown that a particular choice of
the probabilities of distributing quantum numbers among

the clusters and the assumption of a common temperature
lead to a very simple expression for particle multiplicities
and global particle correlations, which are in fact the same
as those relevant to one cluster having as volume the sum
of the volumes of all clusters in their own rest frame. Fur-
thermore, no dependence on single cluster properties nor
on their number is left. The question arises whether such
clusters are actually large enough to allow a canonical
description. In fact, in principle, their mass and volume
might be so small to require a more appropriate micro-
canonical framework, enforcing the exact conservation of
energy and momentum in the calculation of the available
multi-hadronic phase space. In the following, we will prove
that a similar reduction of the expression of particle mul-
tiplicities holds in the microcanonical case, provided that
suitable clusters configuration probabilities occur.

2.1 From microcanonical to canonical ensemble

In the canonical framework of the statistical hadroniza-
tion model, the main tool to derive physical observables
is the partition function Z, which is the sum over all
physical states with fixed quantum numbers weighted by
exp[−E/T ], where E is the energy of the state and T the
temperature1. Similarly, in the microcanonical case, it is
possible to introduce the sum over all physical states with
fixed values of energy-momentum and quantum numbers,
i.e. the density of states Ω which, for the ith cluster, reads

Ωi ≡ Ωi(Pi,Qi, Vi)

=
∑

states

δ4(Pi − Pi;s)δQi,Qi;s
, i = 1, · · · , N, (1)

where Pi is the four-momentum of the cluster, Vi is its vol-
ume in the frame where four-momentum is Pi and Qi =
(Qi1, · · · , Qin) is a vector of its n relevant quantum num-
bers; Pi;s and Qi;s are the corresponding quantities of a
general multi-hadronic state which, in the ideal hadron
gas approximation, is described by a set {njk} 2 of occu-
pation numbers for each hadronic species j and for each
phase space cell k, running from 0 to 1 for fermions and
from 0 to ∞ for bosons. Hence

Pi;s =
∑
jk

pjknjk,

Qi;s =
∑
jk

qjnjk, (2)

where qj is the quantum number vector for the jth hadron
and pjk its four-momentum in the kth phase space cell.
The quantum numbers are supposed to be either integer-
valued additive conserved quantities in strong interactions
(namely electric charge, baryon number, strangeness,

1 In a covariant formulation this weight is to be replaced by
exp[−β · P ] where P is the four-momentum and β the four-
temperature vector

2 Throughout this paper, by {Ai} we mean a shorthand for
the vector (A1, · · · , An), either finite- or infinite-dimensional
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charm and beauty) or positive integer-valued absolute
numbers of valence quarks plus antiquarks. It is worth
remarking that Ωi defined in (1) is a number of states
per unit four-momentum cell, thus it is a Lorentz invari-
ant quantity and has to depend on Lorentz scalars only.
Otherwise stated:

Ωi(Pi,Qi, Vi) = Ωi(P ′
i ,Qi, V

′
i ) = Ωi(P ∗

i ,Qi, V
∗
i ), (3)

where P ′
i is the Lorentz-transformed of Pi and V ′

i is the
volume in the corresponding frame, while P ∗

i and V ∗
i are

the four-momentum (Mi,0) and the volume respectively
in the cluster’s rest frame.
Ωi in (1) can be transformed by means of the integral

representations of Dirac’s and Kronecker’s delta:

δ4(Pi − Pi;s) = 1
(2π)4

∫
d4xi exp[i(Pi − Pi;s) · xi],

δQi,Qi;s
=

1
(2π)n

∫ π

−π

· · ·
∫ π

−π

dnφi exp[i(Qi − Qi;s) · φi].

(4)

By plugging (4) into (1), the density of states reads

Ωi =
1

(2π)4+n

∫
d4xi

∫ π

−π

dnφi exp
[
i(Pi · xi + Qi · φi)

]
×
∑

{njk}

∏
jk

exp
[− injk(pjk · xi + qj · φi)

]
. (5)

The calculation now proceeds by taking advantage of the
commutability between sum and product in (5). However,
the sum over occupation number does not converge to
a finite value for bosons as njk runs from 0 to ∞. The
convergence is recovered if the time component of xi is
provided with a negative imaginary part −iε. If we intro-
duce such a term in (5), then the bosonic sums can be
performed and Ωi reads

Ωi = lim
ε→0

1
(2π)4+n

∫ +∞−iε

−∞−iε
dx0

i

∫
d3xi

∫ π

−π

dnφi

× exp
[
i(Pi · xi + Qi · φi) + F (xi,φi)

]
, (6)

where

F (xi,φi) =
∑
jk

log{1±exp
[− i(pjk ·xi+qj ·φi)

]}±1. (7)

In the above and the following equations the upper sign
applies to fermions and the lower one to bosons. By taking
the continuum limit of the sum over phase space cells,∑

k

→ (2Jj + 1)
Vi

(2π)3

∫
d3p, (8)

the function F finally reads

F (xi,φi) (9)

=
Vi

(2π)3
∑
j

(2Jj + 1)
∫

d3p log[1 ± e−i(pj ·xi+qj ·φi)]±1

=
Vi

(2π)3
∑
j

(2Jj + 1)
∞∑
n=1

(∓1)n+1
∫

d3pe−in(pj ·xi+qj ·φi).

The density of states Ωi can now be used to obtain
physical quantities of interest, for instance the primary
(i.e. directly emitted by the hadronizing source and not
by subsequent hadronic decays) average multiplicity of the
jth hadron species. Since every multi-hadronic state in the
cluster has the same probability, it can easily be proved
that this can be derived multiplying by a fictitious fugacity
λj the exponential factor exp[−i(pjk · xi + qj · φi)] for all
k in (5), taking the derivative of logΩi with respect to λj
and finally setting λj = 1,

〈nij〉 =
∂

∂λj
logΩi(λj)

∣∣∣∣
λj=1

. (10)

Most often, the physical quantities to be compared
with experimental measurements are not those relevant
to individual clusters, rather global ones, that is summed
over all clusters in the event. This implies that sums over
clusters with different four-momenta, quantum numbers
and proper volumes must be performed and we are then
led to consider all possible cluster configurations in terms
of P , V ∗ and Q and their probabilities. In the most general
picture, one envisages the formation of a variable number
N of clusters with probability PN . For a fixed N , there
shall be a conditional probability f∗({Pi,Qi, V

∗
i }) rele-

vant to the configuration {Pi,Qi, V
∗
i } of four-momenta

Pi, quantum numbers Qi and proper volumes V ∗
i (i =

1, · · · , N); of course, any configuration must fulfill conser-
vation laws, i.e.

∑
i Pi = P and

∑
i Qi = Q where P and

Q are the initial four-momentum and quantum number
vector respectively. The corresponding distribution func-
tion in the variables {Pi,Qi, Vi} is

f({Pi,Qi, Vi}) = f∗
({
Pi,Qi, Vi

P 0
i

Mi

}) N∏
i=1

P 0
i

Mi
, (11)

where Mi =
√
P 2
i is the mass of the ith cluster and P 0

i
its energy. Thus, the overall average primary multiplicity
of hadron j should be written as the sum of average pri-
mary multiplicities of single clusters (see (10)), in a fixed
configuration, weighted by the configuration probability f
and summed up over all configurations:

〈nj〉 =
∑
N

PN


 N∏
i=1

∫
d4PidVi

∑
Qi


 f({Pi,Qi, Vi})

×
N∑
i=1

∂

∂λj
logΩi(λj , Pi,Qi, Vi)

∣∣∣∣
λj=1

, (12)

where the symbol
[∏N

i=1

∫
d4PidVi

∑
Qi

]
stands for a

Nth-uple integration and sum. The function f is in gen-
eral unknown and depends on the dynamics of the cluster
formation process. It can be further expanded according
to the well-known conditional probability decomposition
P (AB) = P (A|B)P (B):

f({Pi,Qi, Vi}) = g({Pi,Qi}|{Vi})H({Vi}), (13)
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where H({Vi}) is the probability distribution for the vol-
umes {Vi} and g({Pi,Qi}|{Vi}) the conditional probabil-
ity distribution of four-momenta and quantum numbers
{Pi,Qi} once {Vi} are fixed. A considerable simplification
would occur if g were equal to this w function:

w({Pi,Qi}|{Vi})P (14)

=
δ4(P −ΣiPi)δQ,ΣiQi

∏
i θ(P

0
i )Ωi(Pi,Qi, Vi)[∏

k

∑
Qk

∫
d4Pkθ(P 0

k )Ωk

]
δ4(P −ΣkPk)δQ,ΣkQk

,

where θ is the Heavyside step function. Because of the
identity

N∑
i=1

∂

∂λj
logΩi(λj)

∣∣∣∣
λj=1

=
∂

∂λj
log

N∏
i=1

Ωi(λj)
∣∣∣
λj=1

=
1∏N

i=1Ωi

∂

∂λj

N∏
i=1

Ωi(λj)
∣∣∣
λj=1

, (15)

the substitution of g in (13) with w in (14) turns (12) into

〈nj〉 =
∑
N

PN

[
N∏
i=1

∫
dVi

]
H({Vi}) ∂

∂λj
logΩ(λj)

∣∣∣∣
λj=1

,

(16)
where Ω(λj) is defined by

Ω(λj) (17)

≡

 N∏
i=1

∑
Qi

∫
d4Piθ(P 0

i )Ωi(λj)


 δ4(P −ΣiPi)δQ,ΣiQi

.

It is a remarkable fact that Ω(1) ≡ Ω is exactly the den-
sity of states of a single large cluster, here defined as the
equivalent global cluster (EGC) with four-momentum P =∑

i Pi, quantum numbers Q =
∑

i Qi and volume (in the
reference frame where four-momentum is P ) V =

∑
i Vi,

and can thus be written in the same fashion as Ωi in (6):

Ω = lim
ε→0

1
(2π)4+n

∫ +∞−iε

−∞−iε
dx0

∫
d3x

∫ π

−π

dnφ

× exp
[
i(P · x+ Q · φ) + F (x,φ)

]
, (18)

where

F (x,φ) (19)

=
∑

i Vi
(2π)3

∑
j

(2Jj + 1)
∫

d3p log[1 ± e−i(pj ·x+qj ·φ)]±1.

The fact that Ω is the density of states of the EGC can be
proved in an elegant way by showing that the ws in (14)
are just the probabilities of getting a set of four-momenta
{Pi} and of quantum numbers {Qi} if a cluster of volume
V , four-momentum P and quantum numbers Q is ran-
domly split into N sub-clusters with fixed volumes {Vi}
such that V =

∑
i Vi, for they maximize the total en-

tropy. We stress that the additivity of volumes in (19)

applies to the Vis and not to the proper ones V ∗
i because

the splitting ideally takes place with no spatial overlap be-
tween sub-clusters and Lorentz contraction must be taken
into account. Let now w({Pi,Qi}|{Vi})P be such unknown
probabilities and let us calculate the probability p of a full
microscopic state assuming, for the sake of simplicity, that
{Pi} are discrete variables. According to the basic law of
statistical mechanics, p turns out to be

p = w({Pi,Qi}|{Vi})P
N∏
i=1

δ4(Pi − Pi;s)δQi,Qi;s

Ωi(Pi,Qi, Vi)
, (20)

where w({Pi,Qi}|{Vi})P vanishes if P �=∑i Pi or P
0
i < 0

or Q �=∑i Qi and∑
{Pi,Qi}

w({Pi,Qi}|{Vi})P = 1. (21)

The entropy S = −∑ p log p should be calculated by sum-
ming over all possible configurations {Pi,Qi} fulfilling the
constraints on total four-momentum and quantum num-
bers, and, once a configuration is fixed, over all possible
microscopic states of the clusters. Therefore

S = −
∑

{Pi,Qi}
w

N∏
i=1

∑
statesi

δ4(Pi − Pi;s)δQi,Qi;s

Ωi

× log

[
w

N∏
i=1

δ4(Pi − Pi;s)δQi,Qi;s

Ωi

]
(22)

= −
∑

{Pi,Qi}
w

[
logw + log

N∏
i=1

δ4(Pi − Pi;s)δQi,Qi;s

Ωi

]
,

where the arguments of w and Ωi are implied. In the above
equation advantage has been taken of the fact that the
logarithm’s argument is actually independent of the mi-
croscopic states of the clusters. In order to determine the
ws, S must be maximized with respect to all of them with
the constraint

∑
w = 1. This can be done by means of the

Lagrange multiplier method which leads to the equation

∂S

∂w({Pi,Qi}|{Vi})P + µ (23)

= −1 − logw − log
N∏
i=1

δ4(Pi − Pi;s) + log
N∏
i=1

Ωi + µ = 0,

implying that

w ∝
N∏
i=1

Ωi. (24)

The above equation, after a due normalization and taking
into account that the ws must vanish if P �=∑i Pi or P

0
i <

0 or Q �= ∑i Qi, coincides with (14) and this proves our
statement. A different proof based on a direct calculation
starting from (17) can be found in AppendixA.

By using (17) with λj = 1, (14) can be written as

w({Pi,Qi}|{Vi})P (25)

=
δ4(P −ΣiPi)δQ,ΣiQi

∏
i θ(P

0
i )Ωi(Pi,Qi, ΣiVi)

Ω(P,Q, V )
,
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and (12) as

〈nj〉 =
∑
N

PN

∫
dV

[
N∏
i=1

∫
dVi

]
H({Vi})δ(V −ΣiVi)

× ∂

∂λj
logΩ(λj , P,Q, V )

∣∣∣∣
λj=1

(26)

=
∑
N

PN

∫
dV hN (V )

∂

∂λj
logΩ(λj , P,Q, V )

∣∣∣∣
λj=1

,

where hN (V ) ≡ [∏i

∫
dVi
]
H({Vi})δ(V −ΣiVi) is, by def-

inition, the probability distribution for the EGC with vol-
ume V split into N sub-clusters. Since there is no further
effective dependence left on N in the integrand of (26),
one can define h(V ) =

∑
N PNhN (V ) so that the aver-

age primary multiplicity of the jth hadron species finally
reads

〈nj〉 =
∫

dV h(V )
∂

∂λj
logΩ(λj , P,Q, V )

∣∣∣∣
λj=1

. (27)

This a noteworthy result because the multiplicity in (27)
no longer depends on the configuration of all clusters in the
event nor on their number. Instead, it depends on much
fewer parameters, namely only those of the EGC (its total
four-momentum, volume and quantum numbers).

It is apparent from the previous derivation that the
equivalence between a many cluster system and one global
cluster ultimately rests on the occurrence of the config-
uration probabilities (14). Furthermore, it can be real-
ized by inspecting (12)–(17) that the equivalence holds
in general for any observable A (not necessarily a Lorentz
scalar), which can be written, for a given event configura-
tion {Pi,Qi, Vi}, as follows:

A({Pi,Qi, Vi}) =
L
(∏N

i=1Ωi(Pi,Qi, Vi)
)

∏N
i=1Ωi(Pi,Qi, Vi)

, (28)

where L is a linear operation, e.g. derivation or integra-
tion. If this is the case, the observable averaged over all
configurations with the probabilities (14) reads

〈A〉 =
∫

dV h(V )
L (Ω(P,Q, V ))
Ω(P,Q, V )

. (29)

Amongst such observables, one of the most important and
general is the multi-hadronic probability distribution. For
a given event configuration {Pi,Qi, Vi} it reads

P (N1, · · · , NK)

=


 1
2πi

K∏
j=1

∮
dλj
λ
Nj+1
j


 N∏

i=1

Ωi({λj}, Pi,Qi, Vi)
Ωi(Pi,Qi, Vi)

. (30)

In the above expression K is meant to be the total num-
ber of hadron species; λj are complex variables and the
integration is taken on a closed path around the origin;
the function Ωi({λj}) is a generalization of the previously

used Ωi(λj) with the insertion of fictitious fugacities of all
hadron species at the same time. In fact, (30) has the form
required in (28) for the equivalence with EGC to apply.
Equation (30) can be obtained by inverting P ’s generating
function G(λ1, · · · , λK):

G(λ1, · · · , λK) ≡
∑

N1,···,NK

P (N1, · · · , NK)λN1
1 · · ·λNK

K

=
∑

N1,···,NK

[∑
states

P (state)

∣∣∣∣∣
fixed(N1,···,NK)


λN1

1 · · ·λNK

K

=
∑

states

P (state)λN1
1 · · ·λNK

K =
N∏
i=1

Ωi({λj}, Pi,Qi, Vi)
Ωi(Pi,Qi, Vi)

.

(31)

The last equality follows from

P (state)
K∏
j=1

λ
Nj

j =
K∏
j=1

λ
Nj

j

N∏
i=1

δ4(Pi − Pi;s)δQi,Qi;s

Ωi(Pi,Qi, Vi)
,

(32)
which is to be worked out as in (1)–(6).

Besides the reduction in the number of parameters,
the equivalence with EGC has another attracting feature:
for the canonical formalism to be a sufficiently accurate
approximation, only the EGC has to be large, while there
is no need to enforce a similar request for each individual
cluster. Therefore, one would be allowed to treat canon-
ically (as long as cluster-integrated quantities are con-
cerned) even hadronizing systems in wich single clusters
are a priori known to be too small for a canonical treat-
ment to apply individually. In fact, the transition from mi-
crocanonical to canonical ensemble is based on an asymp-
totic expansion of Ω for large values of EGC volume and
mass, through the saddle-point method, in which only the
leading order is retained. To show this, first a rotation
z = ix in the complex hyperplane for the four-dimensional
integration in (18) is performed:

Ω = lim
ε→0

1
(2πi)4

∫ +i∞+ε

−i∞+ε

d4z

×
∫ π

−π

dnφ
(2π)n

eP ·z+iQ·φ+F (−iz,φ) (33)

= lim
ε→0

1
(2πi)4

∫ +i∞+ε

−i∞+ε

d4z exp[P · z + logZ(z,Q)],

where

Z(z,Q) =
1

(2π)n

∫ π

−π

dnφ exp[iQ · φ + F (−iz,φ)]. (34)

One can recognize in (34), by looking at (19) for F , the ex-
pression of the canonical partition function [4,5,16] of an
ideal hadron gas calculated for a complex four-temperature
z. Now, the saddle-point asymptotic expansion of Ω in
(33) can be performed, which, at the leading order, reads

Ω � exp[P · β + logZ(β,Q)]

√
1

(2π)4 detH(β,Q)
, (35)
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where β is a four-vector such that

∂

∂zµ
[P · z + logZ(z,Q)]

∣∣∣∣
z=β

(36)

= Pµ +
∂

∂zµ
logZ(z,Q)

∣∣∣∣
z=β

= 0, µ = 0, 1, 2, 3,

and H is the hessian matrix ∂ logZ/∂zµ∂zν calculated for
z = β. Since F (−iz,φ) is real-valued (see (19)) if z is a
real four-vector and logZ(z,Q) is real too, according to
(34), then (36) states that β must be a real four-vector.
Moreover, it has to be a timelike vector for the momentum
integration in (19) to converge. If β is identified with the
four-temperature vector (1/T )û, û being a unit timelike
vector, the second term in (36) is nothing but the expres-
sion, with negative sign, of the mean energy-momentum
of a canonical system with four-temperature β. In other
words, the temperature can be defined for a microcanon-
ical system (at the lowest order of an asymptotic saddle-
point expansion) equating the given total energy to its
expression for a canonical system having the same volume
V and the same set of quantum numbers Q. The canonical
expression of the entropy S = P · β + logZ can be recog-
nized in (35) so that the well-known Boltzmann formula
is recovered:

Ω ∝ expS. (37)

The square root factor in (35) can be neglected in the
derivation of most physical observables, such as multiplic-
ities, because it depends on a fractional power of the par-
tition function Z whilst the first factor is an exponential
of it. Altogether, the expressions of multiplicities, multi-
plicity distributions etc. in the canonical ensemble can be
recovered. The canonical partition function (34) can also
be written as follows:

Z(β,Q, V ) =
∑

states

e−βūT ·PstateδQ,Qstate

=
∑

states

∫
d4P e−β·P δ4(P − Pstate)δQ,Qstate

=
∫

d4P e−β·PΩ(P,Q, V ). (38)

As has been mentioned, the volume V argument of Ω in
(38) is measured in the frame where the four-momentum
is P . Indeed, there is a subtle difference between what is
meant as a proper volume in the canonical and the micro-
canonical ensemble. In the microcanonical ensemble the
definition is clear because all states have a definite total
momentum and the reference frame where it vanishes can
be chosen. On the other hand, in the canonical ensem-
ble, we can choose a reference frame where β = (1/T,0)
but this does not ensure that the total momentum exactly
vanish for all the states (it does so on the average with a
small broadening around 0); hence, the actual proper vol-
ume (measured with P = 0) does not coincide with the
parameter volume used in the canonical partition func-
tion (38) with β = (1/T,0). Nevertheless, if we think of a
canonical ensemble as an approximation of a microcanon-
ical ensemble in its rest frame with associated volume V ∗

(according to (35)), the four-vector β solution of (36) has
vanishing spatial part. This means that the use of proper
frame and proper volume V ∗ in Ω and Z in (35) goes
together with proper four-temperature β = (1/T,0).

Two major points are worth being stressed. Firstly, as
we have emphasized, the reduction to an EGC possibly
allows a canonical treatment for Lorentz invariant quan-
tities even though the physical cluster must be treated
microcanonically, and this implies that the temperature
may be a well-defined quantity only in a global sense (at
the level of EGC) while locally, at the level of a single
cluster, one should stick to microcanonically well-defined
concepts such as the energy density. Secondly, a quanti-
tative estimate of how large an EGC should be in terms
of volume and mass for the canonical approximation to
be satisfactory is highly desirable but it is not available
by now. Nevertheless, as the hadron gas has a huge num-
ber of degrees of freedom, it can reasonably be expected
that the validity of a canonical treatment should set in at
relatively low values of volume and mass, though settling
this issue definitely requires very involved microcanonical
calculations. At present, the legitimacy of the canonical
approximation essentially relies on the agreement with the
data.

2.2 Back-boosting clusters

As we have seen, the choice of probabilities (14) for the
configurations of the produced set of clusters is essential
for the canonical approximation to apply. However, those
configuration probabilities are unrealistic because hadrons
emitted in a high energy e+e− or hadronic collision should
look like coming from one source at rest in the center-of-
mass frame whereas they typically emerge in a two (or
more) jet-like structure (see Fig. 1). Nevertheless, as long
as one is interested in Lorentz invariant quantities such
as particle multiplicities, it is possible to rearrange clus-
ter momenta at leisure because there is no dependence
on them as demonstrated by (3) and (10): the effective
arguments of density of states and, consequently, average
multiplicities, are mass and proper volume of the cluster.
Then, the question arises whether it is possible to find a
suitable rearrangement of the cluster momenta so as to
get an expression for the particle primary multiplicities
equal to those obtained before in (16), (26) and (27) for
the EGC starting from a configuration probability distri-
bution whatsoever instead of the particular one of (14).

This question may be restated more quantitatively as
follows: whether, given a general distribution of cluster
four-momenta such as f∗ in (11), it is possible to find a
suitable rearrangement of cluster momenta in each event
such that[

N∏
i=1

∫
d4Pi

]
f∗({Pi,Qi, V

∗
i })O({Mi,Qi, V

∗
i }) (39)

=

[
N∏
i=1

∫
d4Pi

]
u∗({Pi,Qi, V

∗
i })O({Mi,Qi, V

∗
i }),
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Fig. 1. Top: the typical configuration of the momenta of clus-
ters in an actual high energy collision. Bottom: the configu-
ration of the momenta of the same clusters originating from
the splitting of one global cluster at rest. The two configura-
tions are indeed equivalent for Lorentz invariant observables
like hadron multiciplities

where u∗ is a known distribution, Mi =
√
P 2
i is the mass

of the ith cluster and O an arbitrary Lorentz invariant
observable dependent on cluster configurations. If the an-
swer was affirmative, the task of reducing calculations of
average Lorentz invariant quantities to those of the EGC
could be accomplished by choosing u∗ suitably related
to the conditional probabilities w in (14). Thereby, an
effective cluster back-boosting from configurations as in
Fig. 1 top to Fig. 1 bottom could be achieved. It must
be pointed out, however, that f∗ and u∗ cannot be com-
pletely independent of each other. In fact, since O in (39)
is an arbitrary Lorentz invariant observable depending on
{P 2

i }, the marginal distributions f∗M ({Mi,Qi, V
∗
i }) and

u∗M ({Mi,Qi, V
∗
i }) obtained by integrating out the direc-

tions of all Pis in Minkowski space, must be equal, i.e.

f∗M ({Mi,Qi, V
∗
i }) = u∗M ({Mi,Qi, V

∗
i }), (40)

and this means that the actual f∗ cannot be completely
arbitrary for the reduction to EGC to apply. This point
will be discussed more in detail later on.

In principle, the distributions f∗ and u∗ can be linked
by a linear transformation through an unknown matrix X
depending only on four-momenta directions P̂ , P̂ ′ in view
of (40):

f∗({Pi,Qi, V
∗
i })

=

[
N∏
i=1

∫
d4P̂ ′

i

]
X(P̂i, P̂ ′

i )u∗({P ′
i ,Qi, V

∗
i }). (41)

Provided that (40) is fulfilled, there are actually infinitely
many matrices X satisfying (41) and this enables us to set
further requirements. For this purpose, it will be assumed
that the dependence of X on P̂i and P̂ ′

i is realized only
through Lorentz transformations L of the type (see [17])

L = R̂3(ϕ)R̂2(θ) L̂3(ξ), (42)

transforming P̂ ′
i into P̂i; L̂3(ξ) is a Lorentz boost along

the z axis with positive hyperbolic sector ξ and R̂k are
rotations around the kth axis with angles ϕ ∈ [0, 2π) and
θ ∈ [0, π] 3. Lorentz transformations of the type (42) allow
to transform the time axis unit vector t̂ = (1, 0, 0, 0) into
a given arbitrary timelike vector [17]. Conversely, there is
only one Lorentz transformation of this type transforming
P̂ ′
i into P̂i (see AppendixB). Hence, (41) is rewritten as

f∗({Pi,Qi, V
∗
i })

=

[
N∏
i=1

∫
dLi

]
X({Li})u∗({L−1

i (Pi),Qi, V
∗
i }), (43)

where dL is the group measure for the Lorentz transfor-
mations of the type (42), namely [18]

dL =
d[L(t̂)]1d[L(t̂)]2d[L(t̂)]3

L(t̂)0
. (44)

Therefore, the problem stated at the beginning of this sub-
section in (39) has been transformed into the quest of a
solution X of the multiple-integral equation (43), which is
formally a Fredholm integral equation of the first kind. If
a solution exists, then (39) is fulfilled for any Lorentz in-
variant observable O. It should be noted that if X satisfies
(43), then [

N∏
i=1

∫
dLi

]
X({Li}) = 1, (45)

which can be obtained from (43) by enforcing the normal-
ization constraints on both f∗ and u∗:
 N∏
i=1

∑
Qi

∫
d4PidV ∗

i


{ f∗

u∗

}
({Pi,Qi, V

∗
i }) = 1. (46)

Henceforth, we will assume that a solution X of the Fred-
holm integral equation (43) exists and that it is a positive
definite function. In fact, if X > 0, (43) means that f∗
is a probability distribution of cluster four-momenta ob-
tained by boosting clusters, primordially generated with
a four-momenta probability distribution u∗, with Lorentz
transformations distributed with probability X. The re-
quirement of positive definite X makes the integral equa-
tion (43) not always solvable and it is not difficult to devise
actual examples. For instance, if u∗ is the distribution as-
sociated with the splitting of an EGC into N sub-clusters
and f∗ is a distribution characterized by constantly van-
ishing momenta of the clusters, no probability distribution
X is able to transform u∗ into f∗ through (43) because
random boosts to the (small) non-vanishing momenta in-
volved in u∗ yield non-vanishing momenta as well.

In order to accomplish the reduction of calculations of
average Lorentz invariant quantities to the EGC, we now

3 The axis index k here is not to be confused with the index
i in the following equations referring to the cluster which the
boost is applied to
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have to specify the relationship between u∗ and w in (14).
As a first step, let us define the new variables

P ′
i = L−1

i (Pi), V ′
i = V ∗

i

Mi

L−1
i (Pi)0

= V ∗
i

M ′
i

P ′0
i

, (47)

along with the distribution u corresponding to u∗ in the
V ′
i volumes (in analogy with (11)):

u({P ′
i ,Qi, V

′
i }) = u∗({P ′

i ,Qi, V
′
i P

′0
i /M

′
i})

N∏
i=1

P ′0
i

M ′
i

. (48)

Evidently, V ′
i are the cluster volumes measured in the

frame where their four-momentum are P ′
i and the very rea-

son of their introduction resides in their additivity, as will
become clear later. The distribution u can be expanded
by means of conditional probabilities, in the same fashion
as (13):

u({P ′
i ,Qi, V

′
i }) = v({P ′

i ,Qi}|{V ′
i })Y ({V ′

i }). (49)

In the second step, let us calculate the mean value of a
general observable A by using (43):

〈A〉 =
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4PidV ∗

i


 f∗({Pi,Qi, V

∗
i })

× A({Pi,Qi, V
∗
i Mi/P

0
i })

=
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4PidV ∗

i dLi


X({Li}) (50)

× u∗({L−1
i (Pi),Qi, V

∗
i })A({Pi,Qi, V

∗
i Mi/P

0
i }),

where PN is the probability for N clusters to be produced
in an event (see Sect. 1). The variables defined in (47), and
(48) and (49) are now used to turn the previous equation
into

〈A〉 =
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4P ′

idV
′
i dLi


X({Li})Y ({V ′

i })

×v({P ′
i ,Qi}|{V ′

i })A({Li(P ′
i ),Qi, V

′
i P

′0
i /Li(P

′
i )

0}). (51)

No weighting factor is implied in the P ′
i = L−1

i (Pi) trans-
formation as |det Li| = 1. If A is a Lorentz invariant ob-
servable like O in (39), then it must be independent of
Li and the integration of X can be performed separately
yielding 1 in accordance with (45). Hence

〈O〉 =
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4P ′

idV
′
i


 v({P ′

i ,Qi}|{V ′
i })

× Y ({V ′
i })O({M ′

i ,Qi, V
′
i P

′0
i /M

′
i}). (52)

The form of (52) suggests that one should set v = w.
Indeed, if O can be written as in (28), the whole deriva-
tion in Sect. 2.1 for average primary multiplicities can be
repeated, leading to

〈O〉 =
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4P ′

idV
′
i


w({P ′

i ,Qi}|{V ′
i })P ′

× Y ({V ′
i })O({M ′

i ,Qi, V
′
i P

′0
i /M

′
i})

=

[
N∏
i=1

∫
dV ′

i

]
Y ({V ′

i })O(M ′,Q, P ′0ΣiV
′
i /M

′)

=
∫

dV ′y(V ′)O(M ′,Q, V ′P ′0/M ′), (53)

where O in the last expression is meant to be the same
observable calculated in an EGC with four-momentum P ′,
mass M ′ =

√
P ′2, quantum numbers Q =

∑
i Qi, volume

V ′ =
∑

i V
′
i (in the frame where the four-momentum is

P ′) and

y(V ′) ≡
∑
N

PN

[
N∏
i=1

∫
dV ′

i

]
Y ({V ′

i })δ(V ′ −ΣiV
′
i ). (54)

Now we can finally write the sought relationship between
u∗ and w on the basis of (48) and (49) and the condition
v = w:

u∗({Pi,Qi, V
∗
i }) (55)

= w
(

{Pi,Qi}|
{
V ∗
i

Mi

P 0
i

})
P ′
Y

({
V ∗
i

Mi

P 0
i

}) N∏
i=1

Mi

P 0
i

.

Therefore, for any given f∗ configuration probability dis-
tribution, the integral equation (43) for the reduction to
the EGC finally becomes

f∗({Pi,Qi, V
∗
i }) =

[
N∏
i=1

∫
dLi

Mi

L−1
i (Pi)0

]
X({Li})

×w
(

{L−1
i (Pi),Qi}|

{
V ∗
i

Mi

L−1
i (Pi)0

})
P ′

×Y
({
V ∗
i

Mi

L−1
i (Pi)0

})
, (56)

with the X function to be determined. Whilst w is given
by (14), Y is determined by integrating both sides of above
equation in the variables Pi and summing over the Qis.
After the change of variables Pi → P ′

i in (47), one obtains
 N∏
i=1

∑
Qi

∫
d4Pi


 f∗({Pi,Qi, V

∗
i })

=


 N∏
i=1

∑
Qi

∫
d4P ′

i

Mi

P ′0
i


w({P ′

i ,Qi}|
{
V ∗
i

Mi

P ′0
i

})
P ′

× Y
({
V ∗
i

Mi

P ′0
i

})
, (57)

whose left hand side is apparently the actual marginal
probability distribution for cluster proper volumes. Thus,
the function Y should satisfy the integral equation
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H∗({V ∗
i }) ≡ dP

dV ∗
1 · · ·dV ∗

N

=


 N∏
i=1

∑
Qi

∫
d4P ′

i

M ′
i

P ′0
i




×w
(

{P ′
i ,Qi}|

{
V ∗
i

M ′
i

P ′0
i

})
P ′
Y

({
V ∗
i

M ′
i

P ′0
i

})
. (58)

Like for (43), we will simply assume the existence of a
positive definite solution for Y .

We are now in a position to answer the question
whether one can make a calculation for reduction of
Lorentz invariants to the EGC starting from any f∗ distri-
bution whatsoever by solving the two integral equations
(56) and (58). According to the discussion with respect to
(40), this is not true in general because the first integral
transformation by X does not affect the distribution of
the cluster masses. Likewise, (58) only implements the ac-
cordance between the actual proper volume distribution
and that determined by the required insertion of w; hence
it has no effect on the masses. Therefore, there must be
a definite constraint that has to be fulfilled by f∗ for the
reduction to the EGC to be possible and this concerns the
conditional probability distribution of the cluster masses
and quantum numbers once their volumes are fixed. This
is best seen by integrating both sides of (56) with the
usual change of variables Pi → P ′

i in (47) and taking into
account the normalization condition in (45):[

N∏
i=1

∫
d4Piδ

(
Mi −

√
P 2
i

)]
f∗({Pi,Qi, V

∗
i })

≡ f∗M ({Mi,Qi, V
∗
i })

≡ g∗M ({Mi,Qi}|{V ∗
i })H∗({V ∗

i })

=

[
N∏
i=1

∫
d4P ′

i

Mi

P ′0
i

δ

(
Mi −

√
P ′2
i

)]

× w
(

{P ′
i ,Qi}|

{
V ∗
i

Mi

P ′0
i

})
P ′
Y

({
V ∗
i

Mi

P ′0
i

})
, (59)

where f∗ has been decomposed into the product of a con-
ditional probability distribution of masses and quantum
numbers g∗M for fixed proper volumes and the probability
distribution of the proper volumesH∗. The above equation
can be solved to determine g∗M by using the expression of
H∗ in (58). Indeed, the insertion of H∗ only sets the due
overall normalization of g∗M to 1. Thus

g∗M ({Mi,Qi}|{V ∗
i })

=
1
Nf

[
N∏
i=1

∫
d4P ′

i

M ′
i

P ′0
i

δ(Mi −M ′
i)

]

× w
(

{P ′
i ,Qi}|

{
V ∗
i

M ′
i

P ′0
i

})
P ′
Y

({
V ∗
i

M ′
i

P ′0
i

})
, (60)

where Nf is the normalization factor obtained by integrat-
ing the numerator in theMis and summing over Qi. Since
Y can be determined as a function of w and H∗ through
the integral equation (58), (60) states that g∗M , the actual
probability distribution of the cluster masses and quan-
tum numbers for fixed proper volumes, ought to fulfill an

independent constraint. This is definitely not a trivial re-
quirement and must be taken as a further assumption to
make possible the existence of an EGC. Most likely, the
actual g∗M shall not be equal to the right hand side of (60)
but, hopefully, close enough to it to make the equivalence
with the EGC a good approximation, thus justifying the
surprising accuracy of multiplicity fits performed under
that assumption.

It is of the utmost importance to stress that the four-
vector P ′ in (53), whose appearance is related to the par-
ticular form of w (see (14)), is not the initial four-momen-
tum of the collision. Instead, P ′ is the four-momentum of
the EGC to be set as a result of cluster back-boosting and
can be taken as a free parameter. For any chosen value of
the P ′, there shall be possible two corresponding solutions
XP ′ and YP ′ of the integral equations (56) and (58). There
are, however, some restrictions:M ′ =

√
P ′2 must certainly

be smaller than the center-of-mass energy s1/2 and greater
than the actual maximum value of

∑
iMi, the sum of the

cluster masses. The latter constraint is the most relevant,
for it might spoil at once our EGC reduction scheme, fal-
sifying the relationship (60). For instance, a g∗M distri-
bution can be envisaged which is in agreement with that
needed for an EGC with mass M � s1/2 except for a
small tail or bump over which the sum of cluster masses
is very close to s1/2. In this case, it is apparent that the
equivalence with an EGC having one definite mass turns
out to be impossible. Nevertheless, in principle, it should
be possible to split collision events into suitable subsets
having different values for max [

∑
iMi] and link them to

the different EGC four-momenta P ′, just because P ′ is
a free parameter. Pushing further this idea, one is led to
consider a continuous distribution Υ (P ′) to be chosen so
as to restore the agreement between the actual and EGC-
splitting distributions of

∑
iMi ≡Mt:

G(Mt) ≡

 N∏
i=1

∑
Qi

∫
d4PidV ∗

i


 f∗({Pi,Qi, V

∗
i })

× δ(Mt −ΣiMi)

=
∫

d4P ′Υ (P ′)


 N∏
i=1

∑
Qi

∫
d4P ′

idV
′
i


 δ(Mt −ΣiM

′
i)

× w({P ′
i ,Qi}|{V ′

i })P ′Y ({V ′
i }), (61)

where (56) has been integrated by using the change of vari-
ables (47) and the normalization condition (45). Again, we
will assume that a positive definite solution Υ of this in-
tegral equation exists. Of course, the introduction of the
function Υ (P ′) requires (56) and (58) to be changed ac-
cordingly:

f∗({Pi,Qi, V
∗
i }) =

[
N∏
i=1

∫
dLi

Mi

L−1
i (Pi)0

]
X({Li})

×
∫

d4P ′Υ (P ′)w
(

{L−1
i (Pi),Qi}|

{
V ∗
i

Mi

L−1
i (Pi)0

})
P ′

× Y
({
V ∗
i

Mi

L−1
i (Pi)0

})
, (62)
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and

H∗({V ∗
i }) =


 N∏
i=1

∑
Qi

∫
d4P ′

i

Mi

P ′0
i


∫ d4P ′Υ (P ′)

× w
(

{P ′
i ,Qi}|

{
V ∗
i

Mi

P ′0
i

})
P ′
Y

({
V ∗
i

Mi

P ′0
i

})
. (63)

Altogether, (61), (62) and (63) are a system of coupled
integral equations for the unknown functions X, Y and
Υ to be solved at the same time in order to achieve the
reduction to a superposition of EGCs with different four-
momentum and volume. Note that in (61), (62) and (63)
X and Y have been assumed to be independent of P ′; yet
this dependence can be introduced without affecting most
of the previous and following arguments.

As has been discussed with regard to (60), these equa-
tions are not sufficient to ensure that any configurational
distribution f∗ is equivalent to such a superposition, as far
as the calculation of Lorentz invariant quantities is con-
cerned. In fact, after the introduction of Υ , the constraint
(60) is left almost unchanged:

g∗M ({Mi,Qi}|{V ∗
i })

=
1
Nf

[
N∏
i=1

∫
d4P ′

i

M ′
i

P ′0
i

δ(Mi −M ′
i)

]

×
∫

d4P ′Υ (P ′) (64)

× w
(

{P ′
i ,Qi}|

{
V ∗
i

M ′
i

P ′0
i

})
P ′
Y

({
V ∗
i

M ′
i

P ′0
i

})
,

and should be fulfilled independently once Y and Υ have
been determined as a function of the given f∗ and w. Fi-
nally, the average value of a Lorentz invariant observable
O reads (see (53) and (54))

〈O〉 =
∑
N

PN

[
N∏
i=1

∫
dV ′

i

]∫
d4P ′Υ (P ′)Y ({V ′

i })

× O(M ′,Q, ΣiV
′
i P

′0/M ′)

=
∫

dV ′
∫

d4P ′Υ (P ′)y(V ′)O(M ′,Q, V ′P ′0/M ′)

=
∫

dV ∗
∫

d4P ′M
′

P ′0Υ (P
′)y
(
V ∗M

′

P ′0

)
O(M ′,Q, V ∗)

=
∫

dV ∗
∫

dM ′χ(M ′, V ∗)O(M ′,Q, V ∗), (65)

where V ∗ is the EGC’s proper volume and

χ(M ′, V ∗) ≡
∫

d4P ′δ
(√
P ′2 −M ′

)
Υ (P ′)y

(
V ∗M

′

P ′0

)
.

(66)
If the distribution χ allows only large values of volume
and mass, the canonical approximation of the last ex-
pression in (65) could be a satisfactory one. Specifically,
the microcanonical average O(M ′,Q, V ∗) is to be replaced
by the canonical averageOT(T (M ′, V ∗),Q, V ∗) calculated

for the suitable temperature T dependent on mass and
volume (see discussion at the end of Sect. 2.1), so that

〈O〉 =
∫

dV ∗
∫

dM ′χ(M ′, V ∗)O(M ′,Q, V ∗)

�
∫

dV ∗
∫

dM ′χ(M ′, V ∗)OT(T (M ′, V ∗),Q, V ∗)

=
∫

dV ∗
∫

dTχ(M ′(T, V ∗), V ∗)
∂M ′

∂T
OT(T,Q, V ∗)

≡
∫

dV ∗
∫

dTζ(T, V ∗)OT(T,Q, V ∗). (67)

Thereby, the actual average 〈O〉 has been written as a
superposition of canonical averages at different tempera-
tures and volumes. The last integral in (67) can be re-
placed with the mean value of the observable calculated
for average values of T (≡ T ) and V ∗ (≡ V ∗

), namely∫
dV ∗

∫
dTζ(T, V ∗)OT(T,Q, V ∗) = OT(T ,Q, V

∗
).

(68)
In principle, T and V

∗
depend on the particular observable

O (e.g. on the hadron mass if O is a multiplicity). This
notwithstanding, in all previous studies [3–5] on average
multiplicities of hadrons in the canonical ensemble, the
single temperature and volume average in the right hand
side of (68) has been used, tacitly assuming that T and V

∗

were independent of O. This is a reasonable assumption
only if ζ is a strongly peaked function of T and V ∗ or,
in other words, T and V have small fluctuations. On the
other hand, one of the main results of such analyses is
indeed the very good agreement between the data and
single-temperature and volume fits at a fairly constant
temperature value, which somehow a posteriori justifies
the above assumption. This finding also provides a strong
indication that hadronization occurs at a critical value of
the cluster energy density [5].

Instead of deriving canonical formulae as a limiting
case of microcanonical ones, it might be possible, in prin-
ciple, to enforce the exact validity of the canonical ensem-
ble by a suitable choice of Υ , that is of the EGC’s mass
fluctuations. For this purpose, Υ must be set equal to the
probability density σ(P ′) of getting a four-momentum P ′
in a canonical system with four-temperature β, volume
V ′ =

∑
i V

′
i and quantum numbers Q:

σ(P ′)β,Q,V ′ =
∑

states δ
4(P ′ − Pstate)e−β·PstateδQ,Qstate

Z(β,Q, V ′)

=
Ω(P ′,Q, V ′)
Z(β,Q, V ′)

e−β·P ′
, (69)

where Z is the canonical partition function. Note that in
(69) the EGC’s four-momentum distribution function de-
pends on V ′ =

∑
i V

′
i besides P ′, but this does not affect

any of the previous and forthcoming arguments provided
that the integrations are performed in the appropriate or-
der. An integral equation corresponding to (61) in the
canonical ensemble can be obtained by replacing Υ (P ′)
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with a superposition of σ(P ′)s for different temperatures,
with β = (1/T,0):

Υ (P ′) =
∫ ∞

0
dTΨ(T )σ(P ′)β,Q,V ′ (70)

= Ω(P ′,Q, V ′)
∫ ∞

0
dT

Ψ(T )
Z(T,Q, V ′)

e−P ′0/T ,

where Ψ(T ) is an unknown temperature distribution. By
plugging (70) into (61) one obtains again a Fredholm in-
tegral equation of the first kind for Ψ :

G(Mt)

=
∫ ∞

0
dTΨ(T )


 N∏
i=1

∑
Qi

∫
d4P ′

idV
′
i


 δ(Mt −ΣiM

′
i)

×
∫

d4P ′Ω(P
′,Q, ΣiV

′
i )

Z(T,Q, ΣiV ′
i )

e−P ′0/Tw({P ′
i ,Qi}|{V ′

i })P ′

× Y ({V ′
i }), (71)

which, however, may not always have a solution for the ac-
tual G(Mt) might vanish if Mt is less than a finite thresh-
old value whereas the right hand side does not, regardless
of Ψ ’s shape. This is indeed one of the key properties of
the canonical ensemble: for any temperature, the distri-
bution of EGC’s invariant mass (and of ΣMi too) always
has non-vanishing tails down to zero and up to infinity
whilst a superposition of EGCs with definite masses may
not. Therefore, the sought exact equivalence between the
actual system and a canonical superposition of global clus-
ters with finite temperature and volume has one more dif-
ficulty with respect to the microcanonical superposition.
It is interesting to derive the average value of the Lorentz
invariant observable O in this case similarly to what has
been done before in the microcanonical case. This can be
done by replacing Υ (M) in (65) by (70):

〈O〉 =
∑
N

PN

∫ ∞

0
dTΨ(T )

[
N∏
i=1

∫
dV ′

i

]
Y ({V ′

i })

×
∫

d4P ′e−P ′0/T Ω(P
′,Q, ΣiV

′
i )

Z(T,Q, ΣiV ′
i )

×O
(
M ′,Q,

P ′0

M ′ΣiV
′
i

)

=
∫ ∞

0
dTΨ(T )

∫
dV ′y(V ′)

∫
d4P ′e−P ′0/T

×Ω(P
′,Q, V ′)

Z(T,Q, V ′)
O(M ′,Q, V ′P ′0/M ′)

=
∫ ∞

0
dTΨ(T )

∫
dV ′y(V ′)OT(T,Q, V ′), (72)

where y(V ′) is the same function as defined in (54) and

OT(T,Q, V ′) =
∫

d4P ′ e
−P ′0/TΩ(P ′,Q, V ′)
Z(T,Q, V ′)

×O(M ′,Q, V ′P ′0/M ′) (73)

is apparently the average value of the observable O for an
equivalent global cluster at temperature T , volume V ′ and
quantum numbers Q.

2.3 Summary

Before moving to the central topic of this paper, i.e. tran-
verse momentum spectra, it is worth summarizing the
main points of this section.

(1) The statistical hadronization model assumes hadrons
to be produced from a set of clusters with dynam-
ically generated configurations in terms of quantum
numbers, volumes, mass and momenta; within each
cluster, all hadronic states are equally likely.

(2) Since cluster configurations are dynamically gener-
ated, the statistical ansatz needs supplementary dy-
namical information. However, Lorentz invariant ob-
servables, such as hadron multiplicities, are unaffected
by a change of the cluster momenta. Then, in order to
reduce the number of free parameters to a minimum,
the cluster momenta distribution can be modified so
as to achieve equivalence with the calculation for one
global cluster (EGC); this is done through a system
of integral equations.

(3) Provided that positive definite solutions of the afore-
mentioned integral equations exist, the reduction to
the EGC ultimately relies on a particular form (see
(60) and (64)) of cluster mass and charge fluctuations
at fixed volumes. If this is not the case, the equiv-
alence is spoiled. Still, the actual distribution could
be close enough to that particular form to ensure a
sufficiently accurate approximate equivalence.

(4) If mass and volume of the EGC are large, the basic
microcanonical treatment can be replaced by a more
manageable canonical one. Thanks to the equivalence
with the EGC, this should be possible even though
individual physical clusters are too small to be treated
canonically. Therefore, temperature could be a well-
defined quantity only in a global sense and not locally
for each single cluster.

3 Transverse momentum spectra

We can now proceed to the main subject of this paper,
that is, the transverse momentum spectra. Unlike average
multiplicities, this observable is not a Lorentz invariant
one and a special treatment is necessary. To start with,
let us consider the spectrum of the jth hadron species
relevant to the ith cluster:

dnji
dpT

(pT)
∣∣∣
Pi,Qi,V

∗
i

. (74)

The possible dependences of this spectrum on the four-
momenta Pi are crucial for forthcoming arguments. If a
Lorentz transformation Λ is performed and the new trans-
verse momentum is p′

T = Λ(p)T, the corresponding spec-
trum must have the same functional dependence on p′

T
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as the transverse momentum spectrum associated with
the cluster whose four-momentum is Lorentz-transformed
with the same Λ. Hence (Qi and V ∗

i have been omitted)

dnji
dpT

(Λ−1(p)T)
∣∣∣
Pi

∣∣∣∣ dΛ−1(p)T
dpT

∣∣∣∣ = dnji
dpT

(pT)
∣∣∣
Λ(Pi)

. (75)

A rotation around the z axis does not change pT; thus, ac-
cording to the above equation, the spectrum must depend
on P x

i and P y
i only through PiT and not on the azimuthal

angle. Furthermore, pT is not changed by a boost along
the z axis either, so ρji must depend on P 0

i and P z
i only

through the combination P 02
i − P z2

i = M2
i + P 2

iT. There-
fore, the spectrum ought to have a dependence onMi and
PiT only, so that

dnji
dpT

(pT)
∣∣∣
Pi,Qi,V

∗
i

→ dnji
dpT

(pT)
∣∣∣
Mi,PiT,Qi,V

∗
i

. (76)

Indeed, what we are really interested in is the overall av-
erage transverse momentum spectrum of a given hadron
species (labelled by j). To obtain it, the distribution of
mass, volume and quantum numbers of the clusters must
be folded with the sum of the single cluster spectra for a
given configuration, yielding (see (50))

〈
dnj
dpT

〉
=
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4PidV ∗

i




×f∗({Pi,Qi, V
∗
i })

N∑
i=1

dnji
dpT

(pT)
∣∣∣
Mi,PiT,Qi,V

∗
i

. (77)

The distribution f∗ can be replaced with the right hand
side of (62) and, by using the change of variables (47),
(77) becomes

〈
dnj
dpT

〉
=
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4P ′

idV
′
i dLi


X({Li})

×
∫

d4P ′Υ (P ′)w({P ′
i ,Qi}|{V ′

i })P ′Y ({V ′
i })

×
N∑
i=1

dnji
dpT

(pT)
∣∣∣
Mi,Li(P ′

i )T,Qi,V
′

i (P ′0
i /Mi)

. (78)

The physical meaning of this expression is essentially that
the average transverse spectrum of the hadron j is the
convolution of a distribution X of a Lorentz transfor-
mation on clusters (assumed to be positive definite, see
Sect. 2) with the spectra obtained from EGC splitting into
N sub-clusters. The integration over Li can be consid-
erably simplified by using the alternative decomposition
of the Lorentz transformation L defined in (42) (see Ap-
pendixB):

L = L̂3(η)R̂3(φ) L̂1(ζ), (79)

where L̂k and R̂k are to be understood as in (42), φ ∈
[0, 2π) is an angle and η ∈ (−∞,+∞) and ζ ∈ [0,∞) are

hyperbolic sectors. This particular decomposition, along
with its associated measure (see again AppendixB),

dL =
1
2
sinh 2ζdηdϕdζ, (80)

is advantageous in that it allows to integrate away at once
two parameters in (78). In fact

Li(P ′
i )T = ( L̂3(ηi)(R̂3(φi)( L̂1(ζi)(P ′

i ))))T
= (R̂3(φi)( L̂1(ζi)(P ′

i )))T = L̂1(ζi)(P ′
i )T, (81)

because both L̂3 and R̂3 leave the transverse component of
their argument unchanged. Thereby, the transverse com-
ponent of the four-momentum P ′

i undergoing a Lorentz
transformation like (42) or (79) is actually the same one
as obtained by applying one suitable Lorentz boost along
the x axis. The parameter ζi > 0 is related to the four-
velocity associated with this transverse boost, namely

sinh ζi = βTiγTi = uTi, cosh ζi = γTi =
√
1 + u2

Ti,

(82)
while the associated measure reads

1
2
sinh 2ζidζi = uTiduTi. (83)

Therefore, (78) becomes

〈
dnj
dpT

〉
=
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4P ′

idV
′
i

du2
Ti

2


XT({u2

Ti})

×
∫

d4P ′Υ (P ′)w({P ′
i ,Qi}|{V ′

i })P ′Y ({V ′
i })

×
N∑
i=1

dnji
dpT

(pT)
∣∣∣
Mi, L̂1(uTi)(P ′

i )T,Qi,V
′

i (P ′0
i /Mi)

,(84)

where XT({u2
Ti}) is defined by

XT({u2
Ti}) ≡

[
N∏
i=1

∫ +∞

−∞
dηi
∫ 2π

0
dφi

]
X({Li(ηi, φi, uTi)}).

(85)
Before doing anything else, it is advantageous to work out
the integral[

N∏
i=1

∫ ∞

0

du2
Ti

2

]
XT({u2

Ti})
N∑
i=1

dnji
dpT

(pT)
∣∣∣

L̂1(uTi)(P ′
i )T
,

(86)
in which the other arguments of dnji/dpT have been omit-
ted. In fact, at this stage, we can take advantage of phys-
ical information concerning the range over which the dis-
tribution XT is expected to be significantly different from
zero. Indeed, it is well known that in high energy col-
lisions hadrons are mostly emitted with a limited trans-
verse momentum (with respect to the event axis in e+e− or
beam line in hadronic collisions) of the order of a few hun-
dreds MeV, slowly increasing with center-of-mass energy.
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Consequently, in the framework of a cluster hadronization
model, most clusters must have a little transverse momen-
tum and, by taking as educated guess their mass values be-
tween 1 and 3GeV, transverse four-velocities generally are
< 1. In other words, the distribution XT(u2

T1, · · · , u2
TN ) is

expected to be significantly different from zero only in
the region u2

Ti < 1, i = 1, · · · , N, over a reasonably large
center-of-mass energy range. Certainly, at very high en-
ergy, the increase of transverse phase space (for instance,
the increase of radiated gluon pT in e+e− collisions) is
likely to extend the effective transverse four-velocity do-
main beyond 1. Nevertheless, in the present work we will
confine our attention to a center-of-mass energy range
where the condition u2

Ti � 1 applies. Under this circum-
stance, one is allowed to expand all dnji/dpTs in powers
of u2

Ti starting from a suitable point u2
T common to all

clusters:

dnji
dpT

(pT)
∣∣∣

L̂1(uTi)(P ′
i )T

≡ τji(u2
Ti) (87)

= τji(u2
T) +

∂τji
∂u2

Ti

(u2
T)(u

2
Ti − u2

T) + O((u2
Ti − u2

T)
2),

so that the integral (86) becomes

[
N∏
i=1

∫ ∞

0

du2
Ti

2

]
XT({uTi})

[
N∑
i=1

τji(u2
T)

+
∂τji
∂u2

Ti

(u2
T)(u

2
Ti − u2

T) + O((u2
Ti − u2

T)
2)

]
. (88)

The XT distribution will be assumed to be such that even
the first order term in the expansion (87) can be neglected.
Then only the zeroth order term will be retained and (84)
turns into

〈
dnj
dpT

〉
=
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4P ′

idV
′
i


∫ d4P ′Υ (P ′)

×w({P ′
i ,Qi}|{V ′

i })P ′Y ({V ′
i })

×
N∑
i=1

dnji
dpT

(pT)
∣∣∣
Mi, L̂1(ūT)(P ′

i )T,Qi,V
′

i (P ′0
i /Mi)

, (89)

where ūT ≡ (u2
T)

1/2.
Now the reduction to the EGC may apply due to the

fact that all clusters in the above equation are boosted by
the same transverse four-velocity ūT along the x axis. In
other words, the sum of transverse momentum spectra of
all clusters for a given configuration of four-momenta and
volumes, with subsequent integration over them weighted
by w, must yield the transverse momentum spectrum of
the given hadron in an EGC boosted with four-velocity
ūT. This statement can be proved not only for the trans-
verse momentum spectrum but, more generally, for the
invariant four-momentum spectrum. For this purpose, the
convolution equation (89) is generalized to the four-mo-
mentum spectra:

〈
dnj
d4p

〉
=
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4P ′

idV
′
i


∫ d4P ′Υ (P ′)

×w({P ′
i ,Qi}|{V ′

i })P ′Y ({V ′
i })

×
N∑
i=1

dnji
d4p

(p)
∣∣∣

L̂1(ūT)(P ′
i ),Qi,V

′
i (P ′0

i /Mi)
. (90)

To complete the proof, the four-momentum spectrum for
a given configuration must be expressed as in (28), accord-
ing to what has been established in Sect. 1. Since

dnji
d4p

(p)
∣∣∣

L̂1(ūT)(P ′
i ),Qi,V

∗
i

=
dnji
d4p

( L̂
−1
1 (ūT)(p))

∣∣∣
P ′

i ,Qi,V
∗

i

,

(91)
(90) can be rewritten as

〈
dnj
d4p

〉
=
∑
N

PN


 N∏
i=1

∑
Qi

∫
d4P ′

idV
′
i


∫ d4P ′Υ (P ′)

×w({P ′
i ,Qi}|{V ′

i })P ′Y ({V ′
i })

×
N∑
i=1

dnji
d4p

( L̂
−1
1 (ūT)(p))

∣∣∣
P ′

i ,Qi,V
′

i (P ′0
i /Mi)

. (92)

Now, the contributions of primary hadrons, i.e. the ones
directly emitted from hadronizing clusters, are separated
from that of the decay products of heavier hadrons:

〈
dnji
d4p

〉
=
〈
dnji
d4p

〉∣∣∣∣
primary

+
∑
k

〈
dnji
d4p

〉∣∣∣∣∣
k→j

, (93)

where dnji/d4p|k→j is the four-momentum density of
hadrons j stemming from the decay of the primary hadron
k either directly or through intermediate steps (i.e. k →
h → · · · → j). The primary part of the spectrum can be
calculated using a technique similar to that for average pri-
mary multiplicities, introduced in (10). Instead of taking
the derivative of logΩi with respect to a fictitious fugacity
λj , one has to take the functional derivative of logΩi with
respect to a fictitious “fugacity” function λj(p) depending
on the four-momentum p and set to 1 thereafter:

dnji
d4p

∣∣∣∣
primary

=
δ logΩi[λj ]
δλj

∣∣∣∣
λj(p)=1

. (94)

The proof is similar to that for average primary multiplic-
ities and can conveniently be carried out using the expres-
sion of Ωi in (18) with the obviously needed replacement,
for single-mass-valued particles (i.e. not resonances):∫

d3p =
∫

d4pδ
(
p0 −

√
p2 +m2

)
. (95)

It is worth emphasizing that, unlike the derivative with
respect to λj , the functional derivative does not return a
Lorentz invariant quantity. The secondary spectra dnji/
d4p|k→j can be expressed as a convolution of a cluster-
independent kernel function Kjk(p, t) (i.e. the four-
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momentum density of the hadron j stemming from the
decays of primary hadrons k with four-momentum t) ei-
ther directly or through intermediate steps, with the four-
momentum density of primary hadrons k expressed again
as a functional derivative:

dnji
d4p

∣∣∣∣
k→j

=
∫

d4tKjk(p, t)
δ logΩi[λk]
δλk

∣∣∣∣
λk(t)=1

. (96)

Hence, the four-momentum spectrum of the hadron j for
a given configuration of clusters, i.e. the last factor on the
right hand side of (92), reads

N∑
i=1

dnj
d4p ji

( L̂
−1
1 (ūT)(p))

∣∣∣
P ′

i ,Qi,V
∗

i

=
N∑
i=1

δ logΩi[λj ]

δλj( L̂
−1
1 (ūT)(p))

+
∑
k

∫
d4tKjk( L̂

−1
1 (ūT)(p), t)

δ logΩi[λk]
δλk(t)

=
1∏
iΩi

[
δ

δλj( L̂
−1
1 (ūT)(p))

+
∑
k

∫
d4tKjk( L̂

−1
1 (ūT)(p), t)

δ

δλk(t)

]

×
(

N∏
i=1

Ωi[{λk}]
)

=
L L̂

−1
1 (ūT)(p)

(∏N
i=1Ωi(Pi,Qi, Vi)

)
∏N

i=1Ωi(Pi,Qi, Vi)
, (97)

where the final setting λj = 1, λk = 1 is implied. The
operator between square brackets in the above equation,
defined by L L̂

−1
1 (ūT)(p), is a linear one, so that the four-

momentum spectrum of the hadron j for a given config-
uration of clusters has the form required in (28) for the
reduction to the EGC to apply. Therefore, using (97) and
proceeding like for (53), the four-momentum spectrum in
(90) can also be written

〈
dnj
d4p

〉
=
∑
N

PN

[
N∏
i=1

∫
dV ′

i

]
Y ({V ′

i })
∫

d4P ′Υ (P ′)

×
L L̂

−1
1 (ūT)(p) (Ω(P

′,Q, ΣiV
′
i ))

Ω(P ′,Q, ΣiV ′
i )

(98)

=
∫

dV ′
∫

d4P ′Υ (P ′)y(V ′)
L L̂

−1
1 (ūT)(p) (Ω(P

′,Q, V ′))

Ω(P ′,Q, V ′)
.

From now on, calculations will be carried out in the
canonical ensemble only. Formally, this amounts to taking
the Υ function as in (70); we have mentioned in Sect. 1
that this choice might not be an appropriate one if a lower
bound on the sum of cluster exists; yet we will neglect this
possibility. Moreover, we will assume a temperature dis-
tribution function Ψ (see again (70)) equal to, or at least

very close to, a Dirac delta or, in other words, a unique
temperature (see discussion at the end of Sect. 2). These
assumptions amount to the enforcement of an EGC’s four-
momentum distribution function Y in (98) equal to σ in
(69) with β = (1/T,0). The main justification of this is
the very strong indication in favor of a critical outcome
of the analysis of multiplicities. Whether the same critical
value is retrieved in the analysis of transverse momentum
spectra is just the main issue to be studied in this paper.
Hence〈

dnj
d4p

〉
=
∫

dV ′
∫

d4P ′y(V ′)
Ω(P ′,Q, V ′)
Z(T,Q, V ′)

e−P ′0/T

×
L L̂

−1
1 (ūT)(p) (Ω(P

′,Q, V ′))

Ω(P ′,Q, V ′)

=
∫

dV y(V ′)
L L̂

−1
1 (ūT)(p)

(∫
d4P ′e−P ′0/TΩ(P ′,Q, V ′)

)
Z(T,Q, V ′)

=
∫

dV y(V ′)
L L̂

−1
1 (ūT)(p) (Z(T,Q, V

′))

Z(T,Q, V ′)
, (99)

where advantage has been taken of the linearity of L and
(38) has been used. The integration over the volumes V ′
weighted by the y(V ′) distribution is now replaced by a
mean volume V which is assumed to be independent of
the hadron species; this would be an exact operation were
it not for the dependence of the chemical factors on the
volume (see (104) below). Thus, the final result is the four-
momentum invariant spectrum of the hadron j in a canon-
ical EGC with volume V and temperature T evaluated at
the four-momentum L̂

−1
1 (ūT)(p); that is the same spec-

trum, evaluated at the four-momentum p, in a canonical
EGC boosted with L̂1(ūT) (see (91)):〈

dnj
d4p

〉
=

L L̂
−1
1 (ūT)(p)

(
Z(T,Q, V )

)
Z(T,Q, V )

=
Lp

(
Z(βūT ,Q, V /γ̄T)

)
Z(T,Q, V )

, (100)

where βūT ≡ L̂1(ūT)((1/T,0)) = (γ̄T/T, γ̄Tβ̄T/T, 0, 0) =
((1 + u2

T)
1/2/T, ūT/T, 0, 0).

The transverse momentum spectrum can be obtained
by integrating the above spectrum in mass, pz and ϕ in
cylindrical coordinates. In fact, it can be shown that this
operation, from a formal point of view, amounts to a redef-
inition of the functional derivative and integral operator
in (97), (98), (99) and (100):〈

dnj
dpT

〉
=
δ logZ([λj ], βūT ,Q, V /γ̄T)

δλj(pT)

∣∣∣∣
λj=1

(101)

+
∑
k

∫
d4tKTjk(pT, t)

δ logZ([λk], βūT ,Q, V /γ̄T)
δλk

∣∣∣∣
λk=1

,

whereKTjk is the transverse momentum density of hadron
j stemming from the decays of hadron k with four-
momentum t. We are now going to show how to perform
a detailed calculation of the above expression for different
temperatures and transverse velocities.
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4 Calculation of primary and secondary
spectra in the canonical ensemble

Before working out (101), it is worth summarizing the key
assumptions that have led to that expression:

(1) the reducibility of the actual set of clusters to an EGC
as far as the calculation of mean values of Lorentz in-
variant observables is concerned; this has been exten-
sively discussed in Sect. 2 and requires that the inte-
gral equations (56) and (58) for fixed EGC mass, or
the integral equations (61), (62) and (63) for variable
EGC mass, have positive definite solutions;

(2) an EGC large enough to allow the use of canonical
ensemble;

(3) transverse four-velocities uT = βTγT of the clusters
much smaller than 1, making the replacement of a
transverse four-velocity distribution with an average
value ūT a good approximation.

Equation (101) has two terms which are the contribu-
tions to the final spectrum of the primary and secondary
(i.e. produced by hadronic decays) hadrons respectively.
Taking into account that the canonical partition function
reads [5]

Z

(
[{λk}], βūT ,Q,

V

γ̄T

)

=
1

(2π)n

∫ π

−π

dnφeiQ·φ+Fc([{λk}],φ), (102)

where

Fc([{λj}],φ) =
V

γ̄T(2π)3
∑
j

(2Jj + 1) (103)

×
∫

d3p log[1 ± λ(pT) exp(−βūT · pj + iqj · φ)]±1,

the first functional derivative on the right hand side of
(101) yields〈

dnj
dpT

〉primary

=
V (2Jj + 1)

(2π)3
√
1 + u2

T

∞∑
n=1

(∓1)n+1 (104)

×
∫ +∞

−∞
dpz

∫ π

−π

dϕpTe−nβūT ·pj
Z(T,Q − nqj , V )

Z(T,Q, V )
,

with γ̄T = (1+ u2
T)

1/2, as defined below (100). The ratios
of partition functions in the above equations have been
defined as chemical factors in [4,5] as they contain the de-
pendence of the production rate of the considered hadron
on its quantum numbers. The integration in pz and ϕ can
be done analytically, yielding〈

dnj
dpT

〉primary

=
V (2Jj + 1)

2π2
√
1 + u2

T

∞∑
n=1

(∓1)n+1mTpT (105)

× K1


n

√
1 + u2

TmT

T


 I0 (nūTpT

T

) Z(T,Q − nqj , V )

Z(T,Q, V )
,

where mT = (p2
T + m2

j )
1/2 is the transverse mass and

K1, I0 are modified Bessel functions. By integrating the
above spectrum, the formulae for primary multiplicities
quoted in [4,5] can be recovered. At a constant temper-
ature of about 160MeV found in the analysis of multi-
plicities, the effect of quantum statistics can be neglected
for all hadrons except pions and only the first term of
the series in (104) can be retained. This approximation
makes the spectrum shape unaffected by the chemical fac-
tor Z(Q−qj)/Z(Q) (and other possible extra suppression
factors such as γS , see Sect. 5.1) which can be embodied in
an overall normalization factor. Thus, in the Boltzmann
limit 〈

dnj
dpT

〉primary

=
〈nj〉prim

m2
jTK2(mj/T )

√
1 + u2

T

mTpT

×K1



√
1 + u2

TmT

T


 I0 ( ūTpT

T

)
, (106)

where 〈nj〉prim is the primary multiplicity. For resonances
with width Γ > 1MeV, the single mass value mj in (105)
is replaced with a relativistic Breit–Wigner distribution
over an interval [m0 −∆m,m0 +∆m], where ∆m = min
[m − mthreshold, 2Γ ] and mthreshold is the minimal mass
required to open all decay modes.

The calculation of the second term in (101) is much
more involved as a further four-dimensional integration
and up to hundreds of terms are implied in the sum for
each hadron species. This troublesome problem has been
dealt with in [11,12] and has been worked out by an an-
alytical calculation of the kernels KTjk for two and three
body decays and performing integrations either analyti-
cally (whenever possible) or numerically for a reduced set
of hadrons feeding the examined jth hadron species. So
far, this method has not allowed in practice an exhaustive
computation of the resonance decay effect onto observed
spectra. Therefore, we have devised a new method based
on a mixing of Monte Carlo and analytical calculations
that is described in the following.

Let us first consider one term in the sum in the right
hand side of (101); the Boltzmann limit is appropriate
for all ks as pions, the lightest hadrons, are certainly not
involved and one can write〈

dnj
dpT

〉k→j

�
∫

d4tKTjk(pT, t)
V (2Jk + 1)

(2π)3
e−βūT ·pj

×Z(T,Q − qj , V )

Z(T,Q, V )
. (107)

The above expression is in fact the transverse momentum
spectrum of hadron j stemming from the decays of hadron
k emitted from a cluster at temperature T boosted along
the x axis. Instead of trying to calculate all kernels KTjk,
our starting point is to express this spectrum as a function
of the same spectrum in the EGC’s rest frame. Let us then
consider the invariant spectrum
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ε

〈
dn
d3p

〉k→j

= ε∗(p)
〈

dn
d3p∗

〉k→j

(p∗(p)), (108)

where the starred quantities pertain to the cluster’s rest
frame, p = (ε,p) is the four-momentum and p∗ is linked
to p through the Lorentz transformation L̂1(ūT)−1. The
transverse momentum spectrum can be obtained by inte-
grating the cylindrical coordinates pz and ϕ, namely〈

dn
dpT

〉k→j

=
∫ +∞

−∞
dpz

∫ π

−π

dϕpT
ε∗(p)
ε

×
〈

dn
d3p∗

〉k→j

(p∗(p)). (109)

The rest-frame spectrum
〈
dn/d3p∗〉k→j , expressed as

a function of p∗, has the remarkable feature of being
isotropic. In fact, no dependence on direction is possible
for the momentum of a hadron (j) produced by the decay
of a hadron (k) whose primary spectrum is supposed to
be, according to the prediction of the statistical model,
isotropic. Therefore

〈
dn
d3p∗

〉k→j

(p∗) =

〈
dn
dp∗

〉k→j

(p∗)

4πp∗2 =

〈
dn
dε∗

〉k→j

(ε∗)

4πp∗ε∗
.

(110)
By using (110), (109) can be written as an integral trans-
form:〈

dn
dpT

〉k→j

=
∫

dx
∫ +∞

−∞
dpz

∫ π

−π

dϕ (111)

× pT

4πp∗ε

〈
dn
dε∗

〉k→j

(x)δ(x− ε∗(p)).

The energy in the cluster rest frame can be calculated by
using the formula for a Lorentz transformation along the
x axis:

ε∗(p) = γ̄Tε− β̄Tγ̄TpT cosϕ =
√
1 + u2

Tε− ūTpT cosϕ.
(112)

The integration on the variables pz and ϕ can be per-
formed analytically and the result is (see AppendixC)

〈
dn
dpT

〉k→j

=
4pT√

1 + u2
TmT

∫ +∞

0
dp∗

〈
dn
dp∗

〉k→j

× 1
2πp∗√(z+ − zmin)(zmax + 1)

F
(π
2
, r
)
, (113)

where F is the elliptic integral of the first kind and

r =

√
(z+ − zmax)(zmin + 1)
(z+ − zmin)(zmax + 1)

,

zmax = max(1, z−), zmin = min(1, z−),

z± =
ε∗ ± ūTpT√
1 + u2

TmT

ε∗ =
√
p∗2 +m2

j . (114)

What have we gained by expressing the secondary spec-
trum as in (113)? In fact, we have unfolded its dependence
on ūT in an explicit form, unlike in (107), and this has a
strong impact on the problem overall, since we now have
to calculate only the momentum spectrum 〈dn/dp∗〉k→j

in the cluster rest frame, whose shape depends only on T .
Instead of doing this analytically, which is much too com-
plicated for three or more body decays, we have adopted
a Monte Carlo procedure which may be summarized as
follows:

(1) at a fixed temperature, for each light flavored hadron
k with mass < 1.8GeV, we have simulated 200,000
decays distributed among the known decays modes
according to the known branching ratios. If the de-
cay products of k were unstable particles, the decay
chain has been continued until “stable” states (where
“stable” is an experiment-dependent definition) were
reached. The kinematic distributions of hadronic de-
cays have been calculated according to relativistic
phase space [19]. Resonances with a width Γ > 1MeV
have been given a distributed mass according to a rela-
tivistic Breit–Wigner expression (see discussion about
(106)). The considered hadron species, their masses
and widths, their decay modes and the relevant
branching ratios have been taken from [20]. For the
special case of e+e− collisions, where heavy quarks
are abundantly produced, also heavy flavored hadron
decays have been simulated by using known branch-
ing ratios [20] along with the predictions of the Lund
model [19] for unmeasured channels. The set of heavy
flavored states included all measured ones [20] and all
other states quoted in JETSET program tables [19]
predicted by HQET.

(2) The obtained momentum spectra of the various
hadrons emerging from the decay chain initiated by
the hadron k have been stored in 200 bins histograms
ranging from 0 to 3GeV for hadronic collisions and
in 333 bins histograms ranging from 0 to 5GeV for
e+e− collisions, owing to the hardness of heavy fla-
vored hadron decay products. Thereafter, they have
been smoothed according to a quadratic interpolation
procedure [21], normalized to 1 and stored into read-
able files.

(3) The procedure described in (1) and (2) has been re-
peated for temperatures ranging from 140 to 190MeV
in steps of 1MeV.

Overall, for hadronic collisions, the Monte Carlo cal-
culation has involved the simulation of 200,000 decays of
144 light flavored hadronic states for 51 temperature steps,
yielding a grand-total of 59,721 spectra and ≈ 1.2 × 107

stored real numbers. For e+e− collisions, also the decays
of 83 heavy flavored hadron decays have been simulated
yielding a grand-total of 336,447 spectra and ≈ 1.1 × 108

stored real numbers.
If νkj is the momentum spectrum for the decay k →

· · · → j, normalized to 1, and fkj is the mean number
of hadrons j produced by the decay chain started by the
primary hadron k, the final formula obtained by adding
primary (106) and secondary (113) contributions reads
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〈
dnj
dpT

〉
=

〈nj〉prim

m2
jTK2

(mj

T

) mTpT√
1 + u2

T

K1



√
1 + u2

TmT

T




×I0
( ūTpT

T

)
+
∑
k

4〈nk〉primfkjpT√
1 + u2

TmT

×
∫ +∞

0
dp∗ νkj(p∗)F (π/2, r)

2πp∗√(z+ − zmin)(zmax + 1)
, (115)

for all hadrons except pions, for which Bose–Einstein
statistics cannot be neglected and (105) for the primary
spectrum must be used. The 〈n〉prims are the primary mul-
tiplicities. The fkj have been computed on the basis of
experimentally known branching ratios. The momentum
integral in (115) has been computed numerically by tak-
ing into account that νjk are stepwise functions vanishing
for rmp∗ > 3GeV (5GeV for e+e− collisions). This trun-
cation introduces a further numerical error in the compu-
tation which is found to be negligible.

5 Data analysis

The main goal of the data analysis is the assessment of the
consistency of experimental spectra with the prediction of
the statistical hadronization model. This has a twofold im-
plication: firstly, spectrum shapes of different hadrons at a
given center-of-mass energy should be described by essen-
tially the same parameters T and ūT, as long as u2

T � 1,
as discussed before; secondly, the best-fit T s should be in
agreement with the temperature fitted with hadron multi-
plicities. The latter statement holds provided that hadrons
do not undergo significant elastic rescattering after their
formation (or chemical freeze-out), a generally accepted
belief in elementary collision. In view of this objective, a
natural requirement for the data set for a given collision
and center-of-mass energy is the existence of a consider-
ably large sample of both measured transverse momentum
spectra and integrated multiplicities of different hadron
species. Furthermore, the center-of-mass energy must be
high enough to allow the use of a canonical formalism,
which is expected to occur above roughly s1/2 ≈ 10GeV
(see discussion in Sect. 1). Essentially, four collision sys-
tems fulfilling these requirements have been found:K+p at
s1/2 = 11.5 and s1/2 = 21.7GeV, π+p at s1/2 = 21.7GeV
and pp at s1/2 = 27.4GeV. Though the covered energy
range is not large, these points should allow one to settle
both of the previous issues.

5.1 Fit to average multiplicities

The first step of the analysis is a fit to measured average
multiplicities of the various hadron species. The fit proce-
dure is very much like that in [4,5], though with some
significant improvement. The used formula for the pri-
mary multiplicities is the integral of the spectrum (105),
in which only the first term of the series is retained for

all hadrons except pions. Hadron multiplicities can be re-
produced only if a further suppression of hadrons with va-
lence strange quarks is introduced. This extra strangeness
suppression has been implemented in [3–5] by means of a
phenomenological parameter γS < 1 reducing the average
primary multiplicities by γnS

S , nS being the number of va-
lence strange quarks, with respect to the full equilibrium
values. However, in view of the constancy of the ratio be-
tween newly produced strange quarks with respect to u
and d quarks [38], the extra strangeness suppression has
been parametrized differently here. Indeed, the number of
s+ s̄ quarks has been considered as an additional charge
NS to be conserved into final hadrons along with the elec-
tric charge Q, the baryon number N and the strangeness
S. This means that quantum number vectors actually have
four components for the light flavored hadrons:

Q = (Q,N, S,NS),
qj = (Qj , Nj , Sj , NSj). (116)

Unlike Q, N and S, the number of strange quarks to be
shared among the primary hadrons is not fixed by the ini-
tial conditions and may fluctuate. Hence, it is assumed
that the ss̄ pairs are independently produced from the
vacuum with fluctuations governed by a Poisson distribu-
tion. The mean number of ss̄ pairs, 〈ss̄〉, has been taken
as a free parameter replacing γS . Therefore, the actual
formula for the average primary multiplicities reads

〈nj〉primary =
V T (2Jj + 1)

2π2

∞∑
K=0

e−〈ss̄〉〈ss̄〉K
K!

×
∞∑
n=1

(∓1)n+1m
2

n
K2

(nm
T

) Z(Q − qj)
Z(Q)

, (117)

with Q and qj like in (116) and NS = 2K + N0
S where

N0
S is the number of valence strange quarks in the col-

liding particles. The numerical computation of partition
functions with four fixed quantum numbers, such as in
(117), requires the implementation of a quite involved nu-
merical algorithm (described in AppendixD) to keep it
within practical times. Notwithstanding, it becomes ex-
tremely slow even for relatively small number of ss̄ pairs,
say 5. Therefore, the sum over ss̄ pairs in (117) has been
truncated to min[3, 〈ss̄〉+3(〈ss̄〉)1/2] and the Poisson dis-
tribution renormalized accordingly. As 〈ss̄〉 turns out to
be < 1 in all examined collisions (see Table 1), the trun-
cation is essentially harmless.

Once primary average multiplicities of all (light fla-
vored) hadron species up to a mass of 1.8GeV are cal-
culated for a given set of free parameters T , V and 〈ss̄〉,
the final multiplicities to be compared with the exper-
imental data are calculated by using the known decay
modes and branching ratios. The hadronic decay chain is
continued until particles considered stable by the experi-
ments are reached. For the presently examined hadronic
collisions, measured at fixed target, all weakly decaying
light flavored hadrons are considered as stable. The vari-
ous hadron species, their masses and widths, their decay
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Table 1. Parameters of the statistical hadronization model fitted with average multiplicities
in hadronic and e+e− collisions. Also quoted is the Wroblewski factor λS = 2〈ss̄〉/(〈uū〉 + 〈dd̄〉)
calculated with the newly produced valence quark pairs from fitted primary hadron multiplicities.
The very large value of χ2 in pp collisions is owing to the lack of systematic errors [22] for the
measurements quoted in the main reference [23] (see also Table 2)

Collision s1/2 (GeV) T (MeV) V T 3 〈ss̄〉 χ2/dof λS

K+p 11.5 176.9 ± 2.6 5.85 ± 0.39 0.347 ± 0.020 68.0/14 0.203±0.012
K+p 21.7 175.8 ± 5.6 8.5 ± 1.1 0.578 ± 0.056 38.0/9 0.227±0.028
π+p 21.7 170.5 ± 5.2 10.8 ± 1.2 0.734 ± 0.049 39.7/7 0.282±0.032
pp 27.4 162.4 ± 1.6 14.24 ± 0.66 0.653 ± 0.017 315.2/29 0.200±0.005
Collision s1/2 (GeV) T (MeV) V T 3 γS χ2/dof λS

e+e− 14 167.4 ± 6.5 9.7 ± 1.6 0.795 ± 0.088 1.5/3 0.243±0.036
e+e− 22 172.5 ± 6.7 10.6 ± 2.2 0.767 ± 0.094 1.0/3 0.263±0.042
e+e− 29 159.0 ± 2.6 17.3 ± 1.5 0.710 ± 0.047 29.3/12 0.228±0.015
e+e− 35 158.7 ± 3.4 17.5 ± 1.8 0.746 ± 0.040 8.8/7 0.242±0.017
e+e− 43 162.5 ± 8.1 16.2 ± 3.1 0.768 ± 0.065 3.0/3 0.261±0.030

modes and relevant branching ratios have been taken from
[20].

The free parameters T , V and 〈ss̄〉 are determined by
means of a χ2 fit to the measured average multiplicities.
For each experiment, the most recent measurements have
been considered. Multiple measurements from different ex-
periments have been averaged according to the PDG’s [20]
method with error rescaling in case of discrepancy. The
minimization of the χ2 is performed in two steps in or-
der to also take into account the uncertainties on input
parameters such as hadron masses, widths and branching
ratios, according to the procedure described in [38], which
is summarized hereafter. Firstly a χ2 with only experimen-
tal errors is minimized and preliminary best-fit model pa-
rameters are determined. Then, keeping the preliminarily
fitted parameters fixed, the variations ∆nltheo

j of the mul-
tiplicities corresponding to the variations of the lth input
parameter by one standard deviation are calculated. Such
variations are considered as additional systematic uncer-
tainties on the multiplicities and the following covariance
matrix is formed:

Csys
ij =

∑
l

∆nli∆n
l
j , (118)

to be added to the experimental covariance matrix Cexp.
Finally a new χ2 is minimized with covariance matrix
Cexp+Csys from which the best-fit estimates of the param-
eters and their errors are obtained. Actually more than 130
among the most relevant or poorly known input parame-
ters have been varied. This fit technique upgrades the one
used in a previous analysis of the multiplicities in e+e−,
pp and pp̄ collisions [3–5] in that also the off-diagonal el-
ements of Csys are included.

The results of the fit are shown in Tables 1 and 2. The
χ2s are not as small as would have been expected in a
statistically consistent analysis. Nevertheless, it should be
taken into account that many measurements only include
statistical errors and that the large χ2 value is often owing

to a single large deviation. Moreover, it should be empha-
sized once more that the assumptions that the existence
of an EGC relies on, may not be fully realized.

The values of temperatures and Wroblewski parame-
ters found, λS , are very close to those found in previous
analyses [4,5,38]; the difference between the old [4,5] and
present T value in pp collisions at s1/2 = 27.4GeV (and
e+e− collisions as well, see Sect. 5.3) is mainly due to the
new parametrization (〈ss̄〉 instead of γS), to the upgraded
fitting procedure taking into account correlations in the
systematic errors, to the extension of the hadron mass
spectrum cut-off (from 1.7 to 1.8GeV) and the use of an
updated set of hadronic data [20]. A noteworthy feature
is the sizeable increase of temperature as the center-of-
mass energy decreases (see Table 1). Due to uncertainties
relevant to the assumed physical picture and the lack of
systematic errors in several measurements, it cannot be
established, for the present, whether this increase is a gen-
uine physical effect rather than a numerical artefact in the
fit. However, it should be remarked that such an effect has
been advocated as a possible explanation of the constancy
of the p̄/π ratio [39].

5.2 Fit to transverse momentum spectra

The measured transverse momentum spectra are fitted to
(115) for all hadron species except pions; for the latter, a
special treatment was necessary, which is discussed later.
A peculiar feature of the statistical model is the strong
relation between multiplicities and spectra as both have a
main dependence on the same parameter T . However, as
(115) shows, final hadron spectra have both a direct and
an indirect dependence on temperature through the pri-
mary multiplicities. Since we want to test the consistency
between the chemical temperature Tch obtained from fits
to multiplicities and the one – denoted T – obtained from
a spectrum shape analysis, we have fixed the primary mul-
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Table 2. Particle multiplicities in hadronic collisions

Particle Measured Fitted Reference

K+p s1/2 = 11.5GeV

π0 2.50 ± 0.12 2.724 [24]
π+ 2.860 ± 0.087 2.802 [25]a,b

π− 1.960 ± 0.025 1.973 [25]a,b

K+ 0.685 ± 0.062 0.6563 [25]a,b

K− 0.087 ± 0.025 0.09420 [25]a,b

ρ0 0.254 ± 0.020 0.3468 [26]b

K∗0 0.249 ± 0.023 0.2150 [26]b

K̄∗0 0.0685 ± 0.019 0.03225 [26]a,b

K∗+ 0.253 ± 0.019 0.2749 [26]b

K∗− 0.0180 ± 0.0093 0.02757 [26]a,b

f2(1270) 0.0734 ± 0.0140 0.05044 [26]a,b

K∗0
2 0.0616 ± 0.0068 0.02266 [26]a,b

K∗+
2 0.0653 ± 0.016 0.03292 [26]a,b

Λ 0.0678 ± 0.0031 0.06828 [27]b,c

Λ̄ 0.0404 ± 0.0025 0.04266 [27]b,c

Σ∗+ 0.0124 ± 0.0037 0.01089 [27]b,c

Σ∗− 0.00436 ± 0.00310 0.005099 [27]b,c

K+p s1/2 = 21.7GeV

charged 8.21 ± 0.12 8.228 [29]c

π0 2.93 ± 0.47 3.717 [30]d

K0
S 0.390 ± 0.045 0.4166 [31]

ρ0 0.308 ± 0.037 0.4820 [32]
K∗0 0.290 ± 0.028 0.2486 [32]a

K̄∗0 0.142 ± 0.027 0.06152 [32]a

K∗+ 0.319 ± 0.042 0.2980 [32]a

f2(1270) 0.095 ± 0.017 0.06931 [32]a

Λ 0.092 ± 0.008 0.1009 [33]a

Λ̄ 0.061 ± 0.009 0.06688 [33]a

∆++ 0.214 ± 0.034 0.1596 [33]
Σ∗+ 0.021 ± 0.009 0.01519 [33]a

π+p s1/2 = 21.7GeV

charged 8.31 ± 0.10 8.434 [29]c

π0 3.092 ± 0.47 4.003 [30]d

K0
S 0.236 ± 0.025 0.2673 [31]

ρ0 0.460 ± 0.020 0.5322 [34]a

K∗0 0.129 ± 0.014 0.09909 [34]a

K̄∗0 0.148 ± 0.014 0.08879 [34]a

Λ 0.103 ± 0.008 0.1195 [33]a

Λ̄ 0.032 ± 0.005 0.03259 [33]a

∆++ 0.221 ± 0.025 0.1707 [33]
Σ∗+ 0.015 ± 0.007 0.01984 [33]a

pp s1/2 = 27.4GeV

π0 3.87 ± 0.12 4.594 [23]a

π+ 4.10 ± 0.11 4.479 [23]a

π− 3.34 ± 0.08 3.612 [23]a

K+ 0.331 ± 0.016 0.3085 [23]a

K− 0.224 ± 0.011 0.1852 [23]a

Table 2. (continued)

Particle Measured Fitted Reference

pp s1/2 = 27.4GeV

K0
S 0.225 ± 0.014 0.2377 [35]a, [36]c

η 0.30 ± 0.02 0.4046 [23]a

ρ0 0.384 ± 0.018 0.5830 [23]a

ρ+ 0.552 ± 0.082 0.6236 [23]a

ρ− 0.354 ± 0.058 0.4698 [23]a

ω 0.390 ± 0.024 0.4798 [23]a

K∗0 0.120 ± 0.021 0.09458 [23]a

K̄∗0 0.0902 ± 0.016 0.06278 [23]a

K∗+ 0.132 ± 0.016 0.1080 [23]a

K∗− 0.0875 ± 0.012 0.05710 [23]a

f0(980) 0.0226 ± 0.0079 0.03876 [23]a

φ 0.0189 ± 0.0018 0.02401 [23]a

f2(1270) 0.0921 ± 0.012 0.06623 [23]a

ρ3(1690) 0.078 ± 0.049 0.009045 [37]a

p 1.200 ± 0.097 1.054 [23]a

p̄ 0.063 ± 0.0020 0.05277 [23]a

Λ 0.1230 ± 0.0062 0.1461 [35]a, [36]c

Λ̄ 0.0155 ± 0.0034 0.01669 [35]a, [36]c

Σ+ 0.0479 ± 0.015 0.04369 [23]a

Σ− 0.0128 ± 0.0061 0.03252 [23]a

∆++ 0.218 ± 0.003 0.2514 [23]a

∆0 0.1410 ± 0.0079 0.2057 [23]a

∆̄−− 0.0128 ± 0.0049 0.009645 [23]a

∆̄0 0.0335 ± 0.0098 0.01426 [23]a

Σ∗+ 0.0204 ± 0.0024 0.02060 [35]a,d

Σ∗− 0.0101 ± 0.0018 0.01396 [35]a,d

Λ(1520) 0.0171 ± 0.003 0.01054 [23]a

a Only statistical error
b The multiplicity has been calculated by dividing the quoted
cross section by the inelastic cross section σin = 16.07 ±
0.11mb measured by the same collaboration [28]
c Systematic error maybe not included in the quoted experi-
mental error
d The multiplicity has been calculated by dividing the quoted
cross section by the inelastic cross section σin = 17.53mb for
K+p, σin = 20.71mb for π+p and σin = 32.80mb for pp colli-
sions, inferred from combined quotations of multiplicities and
cross sections of other particles

tiplicities 〈nk〉prim and 〈nj〉prim in (115) to the values ob-
tained from the independent multiplicity fits as shown in
Tables 1 and 2. This position also allows one to disentangle
the dependence on T of the shapes of all spectrum com-
ponents from that of their overall normalization. As far
as pions are concerned, Bose–Einstein statistics cannot be
neglected and the first term on the right hand side of (115)
must be replaced with the series on the right hand side of
(105), actually truncated at n = 5. This is quite a special
case compared with all other hadrons because the chemi-
cal factors also affect the shape of the spectrum besides its
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normalization. Therefore, both integrated primary multi-
plicity and chemical factors of the pions have been fixed
to those calculated with the parameters V , Tch, 〈ss̄〉 of the
multiplicity fit.

Each measured spectrum is fitted with three free pa-
rameters: T , ūT and an overall normalization factor A
multiplying the right hand side of (115). In principle, this
factor would not be needed if the average multiplicities
〈nk〉 and 〈nj〉 were in perfect agreement with the experi-
mental measurements. However, this is never the case as
more or less pronounced deviations from measured values
usually occur and, also, the transverse momentum spec-
trum and multiplicity may have been measured in differ-
ent experiments. Therefore, the normalization parameter
A has to be introduced in order to ultimately decouple
the dependence of the spectrum shape on T and ūT from
that of its integral.

The fit consists of a minimization of a χ2 for each
measured hadron j:

χ2
j =

M∑
i=1

(∆njitheo −∆njiexp)
2

σ2
iexp + σ2

isys
, (119)

where the sum runs over the M bins of the experimental
spectrum and ∆nji are the integrals over the ith bin of
the measured spectrum:

∆nji =
∫
ith bin

dpkT

〈
dnj
dpkT

〉
. (120)

The exponent k stands for the different variables used for
the spectra, essentially pT or p2

T. As far as the experi-
mental value is concerned, the above integral is simply
the product of the quoted differential spectrum times the
bin width. Besides the quoted experimental error σiexp,
we have also included in the χ2 (119) the systematic error
(added in quadrature) due to the uncertainty on masses,
widths and branching ratios of the involved hadrons. This
is calculated by using the estimated systematic uncertain-
ties εj on the total multiplicity with the method described
in the previous subsection:

εj =
√∑

l

(∆nlj)2. (121)

This error is assumed to contribute to the errors of all bins
independently and proportionally to the spectrum height:

σisys = εj
(∆njiexp)2√∑M
i=1(∆njiexp)2

, (122)

so that the relative systematic error on the spectrum
height in each bin is constant. With such an assumption,
the correlations between different bins stemming from the
correlations between uncertainties on primary multiplici-
ties (pointed out in Sect. 5.1) in (115) are neglected and
this should lead to somewhat optimistic χ2 values. This ef-
fect can be seen in the residuals distributions of the fits to

pion spectra in Fig. 9 which show some coherent structure
indicating a bin-to-bin correlation.

The χ2 minimization yields preliminary T , ūT and A
values for each hadron. Since both the T and ūT param-
eters determine the slope of the spectrum, these are ex-
pected to be correlated variables in the fit. Hence, in order
to check the fit outcome quality and assess the degree of
correlation between T and ūT, χ2 contour plots in the T–
ūT plane are calculated by keeping A fixed, equal to its
preliminary best-fit value. It must be remarked that the
best-fit A is almost entirely independent of T and ūT as
the full spectrum integral in (115) depends only on the
multiplicities 〈nj〉 and 〈nk〉, which are fixed in the spec-
trum fit:

〈nj〉 = A
[〈nj〉prim + 〈nk〉fkj

]
. (123)

Indeed, a residual correlation between A and T–ūT is
brought about by the unmeasured portion of the spectrum
at high pT which, however, gives a very small contribution
to the overall integral. Thus, the quasi-independence of A
on T and ūT makes the pattern of local minima of the χ2

in the T–ūT plane an (almost) absolute one.
Most χ2 contour plots exhibit a pattern of several shal-

low local minima along a valley in the T–ūT plane (see
Figs. 2, 3 and 4) demostrating a strong anticorrelation be-
tween T and ūT in the fit. This feature makes the defi-
nition of a best fit quite difficult; there are indeed many
local minima with sufficiently low χ2 or, equivalently, pro-
viding a satisfactory confidence level for the χ2 test (see
Fig. 5).

In order to better define the best-fit values, the search
of the local minima is performed in the T–ūT plane for the
sum of all χ2

js at a given center-of-mass energy, thereby
assuming the universality of the slope parameters T and
ūT for different hadron species. Due to the quasi-indepen-
dence between the normalization parameter A and (T,
ūT), this procedure amounts to fitting the spectra of all
measured hadrons at the same time, by using one T , one
ūT and different normalization parameters A1, A2, · · · for
each hadron species. A suitable minimum for

∑
j χ

2
j can

be determined by intersecting the valley of local minima
with the 1σ band of the temperature Tch extracted from
the fit to the average multiplicities for the same collid-
ing system. This is shown in Figs. 6, 7 and 8 for pp col-
lisions at s1/2 = 27.4GeV, K+p and π+p collisions at
s1/2 = 21.7GeV. It should also be emphasized that for
K+p and π+p collisions the local minimum located within
the Tch band coincides with the absolute minimum and,
moreover, the local minima have apparently moved to-
wards higher T with respect to pp collisions, in agreement
with the same observed trend of Tch (see Table 1); this is a
desired indication of a correlation between T and Tch. In
Figs. 6, 7 and 8 are also shown the confidence level contour
lines for the test variable p [40]:

p =
∏
j

P (χ2
j (T, ūT), nj), (124)

P (χ2
j (T, ūT), nj) =

∫ χ2
j (T,ūT)

0
f(χ2, nj)dχ2,
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Fig. 2. χ2 contour lines in the T–ūT plane for the fits to the
identified particle transverse momentum spectra in pp colli-
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min + 81 (9σ)

u–

T

π- π0

u–

T

K0 ρ0

T (GeV)

u–

T

K*0

T (GeV)

f2

0.1

0.2

0.3

0.1

0.2

0.3

0.1

0.2

0.3

0.14 0.15 0.16 0.17 0.18 0.14 0.15 0.16 0.17 0.18

Fig. 3. χ2 contour lines in the T–ūT plane for the fits to iden-
tified particle transverse momentum spectra in K+p collisions
at s1/2 = 21.7GeV. The contours range from χ2

min + 1 (1σ) to
χ2

min + 25 (5σ)

where f(χ2, nj) is the χ2-distribution for nj degrees of
freedom. This variable can be used as a suitable test for
the hypothesis of consistency, with one T and one ūT
value, among the spectrum slopes of different species, in
that it combines symmetrically the confidence levels of
all particles. Conversely, the sum of χ2s, albeit the most
appropriate quantity to estimate the assumed common T
and ūT, cannot be used as a consistency test variable be-
cause it favors particle spectra with more, and more accu-
rately, measured points. The maximum confidence levels
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tified particle transverse momentum spectra in π+p collisions
at s1/2 = 21.7GeV. The contours range from χ2
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χ2

min + 25 (5σ)
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Fig. 5. Confidence level contour lines relevant to the χ2 test
for spectra in pp collisions at s1/2 = 27.4GeV. The contours
range from a confidence level of 31.7% (1σ) to 5.7× 10−5 (5σ)
in steps of 1σ, except K− for which the innermost contour
corresponds to a confidence level of 21.1%

for the test variable p (whose location does not need to
be the same as for the global χ2) in Figs. 6, 7 and 8 are
quite poor. However, it should be recalled that the used
fit model, for hadron multiplicities as well as for trans-
verse momentum spectra, rests on several additional as-
sumptions and approximations, besides the basic postu-
late of local statistical equilibrium, essentially those listed
at the beginning of Sect. 4, which make the theoretical
formulae expected to be valid only to a certain degree of
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Fig. 6. Global χ2 contour lines (top) and confidence level con-
tours for the test variable p in (125) (bottom) in the T–ūT

plane for the fits to the transverse momentum spectra in pp col-
lisions at s1/2 = 27.4GeV. The χ2 contours range from χ2

min+1
(1σ) to χ2

min + 81 (9σ) whereas the confidence level contours
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band determined by the fit to the multiplicities. The local χ2

minimum chosen as starting point of the single particle fits is
the small one beside the vertical band on the left hand side

accuracy. Moreover, the use of fixed fitted relative mul-
tiplicities of parent hadrons in the transverse momentum
spectrum fits involves a further systematic uncertainty,
which is very difficult to estimate without resorting to a
global fit of spectra and multiplicities at the same time,
which is beyond the scope of the present work. In view of
such considerations, it should not be too surprising that
rigorous statistical tests do not turn out to be fully sat-
isfactory, especially for very accurately measured spectra.
Nonetheless, it would be desirable to have a more direct
and intuitive feeling whether the examined spectra are in
agreement with each other within the expected accuracy of
the model, whereas the measure of consistency by means
of a maximum confidence level can be too cryptic in this
regard. This and related issues will be discussed in detail
in the next section by addressing the mT scaling property.

Once a local minimum is found through the intersec-
tion of the Tch band with the best-fit valley of the global
χ2, all single spectra are refitted in turn by instructing the
minimization algorithm [44] to start from that very point
with a small initial search step. This allows one to deter-
mine the single particle χ2’s local minimum closest to the
selected initial point. The refit results are summarized in
Table 3. The fitted spectra are shown in Fig. 9 along with
the calculated cumulative contributions of several classes
of parent hadrons and residuals distribution. Because of
the closely spaced local minima in the χ2 graphs, the mini-
mization algorithm has not been able to produce a reliable
error estimate. Indeed, in most cases, the found local min-
ima are so shallow that it is not even possible to define an
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Table 3. Best-fit temperatures and mean transverse four-
velocities ūT for each identified hadron transverse momentum
spectrum in hadronic collisions

Particle T (MeV) ūT χ2/dof Reference

K+p s1/2 = 21.7GeV

π0 181.6 0.2101 19.2/17 [41]
π− 175.0 0.1485 39.3/43 [42]
K0

S 158.0 0.1631 11.2/10 [31]
ρ0 174.7 0.3155 3.55/3 [32]
K∗0 141.4 0.0218 1.23/4 [32]
f2(1270) 161.7 0.1553 1.61/3 [32]

π+p s1/2 = 21.7GeV

π0 174.0 0.3021 13.2/17 [41]
π− 171.4 0.1178 25.3/43 [42]
K0

S 162.9 0.1251 8.00/11 [31]
ρ0 174.5 0.1252 1.05/2 [34]
K∗0 140.0 0.0018 4.31/3 [34]
K̄∗0 140.0 0.0031 5.36/2 [34]

pp s1/2 = 27.4GeV

π0 159.6 0.1948 22.5/22 [23]
π+ 161.0 0.2140 37.5/38 [23]
π− 165.0 0.2179 40.2/38 [23]
K+ 168.5 0.2324 26.9/38 [23]
K− 158.3 0.1960 31.2/38 [23]
η 174.4 0.2260 13.3/10 [23]
ρ0 158.9 0.1971 1.29/6 [23]
f2(1270) 156.0 0.2004 0.571/1 [43]

error on the basis of a nearby χ2 = χ2
min+1 closed contour

line. Thus, we have decided not to quote any error on the
best-fit parameters in Table 3.

We have also analyzed the transverse momentum spec-
tra of hadrons in K+p collisions at s1/2 = 11.5GeV; the
relevant contour plots of π0 [45] and K0

S [46] are shown
in Fig. 11. It can be seen that in both cases the best-fit
valley does not intersect the 1σ Tch band. Therefore, it is
not possible to find a suitable value of temperature to re-
produce both integrated yields and transverse momentum
spectra in this collision system. This failure can be possi-
bly explained by the inadequacy of the canonical frame-
work at low center-of-mass energy, where microcanonical
effects are expected to show up. Particularly, exact total
transverse momentum conservation should entail a steep-
ening of the single inclusive transverse momentum spectra
(a high pT suppression analogous to chemical canonical
suppression), an effect which is in agreement with the ob-
served discrepancy in Fig. 11. However, this explanation
is still to be thoroughly tested by carrying out a detailed
microcanonical calculation.

Table 4. Particle multiplicities in e+e− collisions

Particle Measured Fitted Reference

s1/2 = 14GeV

π0 4.69 ± 0.20 4.640 [47]
π+ 3.6 ± 0.3 3.831 [48]
K+ 0.60 ± 0.07 0.5872 [48]
K0

S 0.563 ± 0.045 0.5557 [48,47]
p 0.21 ± 0.03 0.1943 [48]
Λ 0.065 ± 0.020 0.07972 [48]

s1/2 = 22GeV

π0 5.5 ± 0.4 5.488 [47]
π+ 4.4 ± 0.5 4.611 [48]
K+ 0.75 ± 0.10 0.6802 [48]
K0

S 0.638 ± 0.057 0.6473 [48,47]
p 0.31 ± 0.03 0.3012 [48]
Λ 0.110 ± 0.025 0.1227 [48]

s1/2 = 29GeV

π0 5.3 ± 0.7 6.395 [49]
π+ 5.35 ± 0.25 5.417 [49]
K+ 0.70 ± 0.05 0.7405 [49]
K0

S 0.691 ± 0.029 0.7072 [47,49–52]
η 0.584 ± 0.075 0.5636 [50,52]
ρ0 0.90 ± 0.05 0.7604 [52]
K∗0 0.281 ± 0.022 0.2309 [49–52]
K∗+ 0.310 ± 0.030 0.2338 [49]
η′ 0.26 ± 0.10 0.05988 [50]
φ 0.084 ± 0.022 0.08672 [49]
p 0.30 ± 0.05 0.2812 [49]
Λ 0.0983 ± 0.006 0.1023 [49,50,52]
Ξ− 0.0083 ± 0.0020 0.006844 [50,52]
Σ∗+ 0.0083 ± 0.0024 0.01030 [52]
Ω 0.0070 ± 0.0036 0.0004667 [50]

s1/2 = 35GeV

π0 6.31 ± 0.35 6.4786 [53,54]
π+ 5.45 ± 0.25 5.494 [55]
K+ 0.88 ± 0.10 0.7789 [55]
K0

S 0.740 ± 0.017 0.7444 [47,54,48]
η 0.636 ± 0.080 0.5791 [53,54]
ρ0 0.756 ± 0.077 0.7660 [48,53]
K∗+ 0.361 ± 0.046 0.2461 [48,53,54]
p 0.303 ± 0.033 0.2900 [53,55]
Λ 0.108 ± 0.010 0.1103 [54,55]
Ξ− 0.0060 ± 0.0021 0.007783 [55]

s1/2 = 43GeV

π0 6.66 ± 0.65 6.561 [53,55]
π+ 5.55 ± 0.25 5.565 [55]
K+ 0.97 ± 0.15 0.8089 [56]
K0

S 0.760 ± 0.035 0.7735 [48]
K∗+ 0.385 ± 0.094 0.2613 [48]
Λ 0.128 ± 0.024 0.1310 [55]
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Fig. 10. Fraction of primary pions and kaons in pp collisions
at s1/2 = 27.4GeV estimated by using the fitted parameters in
Table 3. The relative primary component increases as a func-
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Fig. 11. χ2 contour lines in the T–ūT plane for the fits to
identified particle transverse momentum spectra in K+p col-
lisions at s1/2 = 11.5GeV. The contours range from χ2

min + 1
(1σ) to χ2

min + 25 (5σ)

5.3 Transverse momentum spectra in e+e− collisions

The very definition of transverse momentum spectrum
considerably changes from hadronic to e+e− collisions. In
the latter, the reference projection axis for pT is no longer
the beam line but a suitably defined event or thrust axis,
which is the best approximation to the direction of the
primarily created qq̄ pair. However, this axis has to be de-
termined experimentally on an event-by-event basis and
this is generally done by minimizing the sum of transverse
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Fig. 12. χ2 contour lines in the T–ūT plane for the fits to
charged particle transverse momentum spectra in the e+e−

collisions at s1/2 = 14, 22, 29 and 35GeV. The contours range
from χ2

min+1 (1σ) to χ
2
min+25 (5σ). Also shown are the abso-

lute minima and the vertical 1σ temperature band determined
by the fit to the multiplicities

projections of the particle momenta. Hence, the transverse
momentum of a particle with respect to the event axis is a
biased variable in that the same quantity has been used to
determine the axis itself. Only when the number of particle
per event becomes very large, those spurious correlations
should be negligible.

Being aware of this difficulty, we have fitted charged
particle transverse momentum spectra in e+e− collisions
at four different center-of-mass energies: 14, 22, 29, and
35GeV [57]. Unlike in hadronic collisions, transverse spec-
tra have not been measured for several identified particles
and this compelled us to consider only charged tracks. The
fit procedure and the treatment of the data was essentially
the same as for hadronic collisions except for the prelim-
inary multiplicity fit which has been performed with the
old γS parametrization [4] instead of the aforementioned
(see Sect. 5.1) new method. Moreover, the hadronic decay
chain has been extended to include weak decay products of
K0

S and hyperons in order to match the experimental defi-
nition of final hadrons in e+e− experiments. The inclusion
of heavy flavored events has been implemented according
to the procedure described in [4] and the branching ra-
tios Rq = σ(e+e− → qq̄)/σhad have been taken as the
lowest order ones Rq ∝ Q2

q. Fit results are quoted in Ta-
bles 1 and 4.

The χ2 contour plots in the T–ūT plane are shown
in Fig. 12 along with the relevant 1σ Tch bands. Whilst
there is no intersection between best-fit valley and Tch
band for the e+e− collisions at s1/2 = 14GeV, as was
found in K+p collisions at s1/2 = 11.5GeV, fairly consis-
tent local minima can be determined up to s1/2 = 29GeV
with sufficiently low ūT values. However, already at s1/2 =
29GeV and chiefly at s1/2 = 35GeV, the fitted ūT is
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maybe too large for the assumed zero order approxima-
tion, described in Sect. 3, to hold. This is confirmed by
the increasingly high χ2 values demonstrating the inabil-
ity to fit the experimental transverse momentum spec-
trum to the shape (115). Otherwise stated, as the center-
of-mass energy increases, transverse momentum spectra
of the hadrons become more and more influenced by the
shape (which can no longer be parametrised with an aver-
age ūT only) of the transverse four-velocity distribution of
hadronizing clusters, which is related in turn to the shape
of the pT distribution of gluons radiated in the perturba-
tive QCD shower. Conversely, the primordial T -dependent
hadronization spectrum becomes less and less important;
at high energy, its trace is only a small superimposed noise
smearing out the original partonic distributions.

6 Discussion and mT scaling

As has been discussed at the beginning of previous sec-
tion, two main predictions of the statistical hadronization
model have been provided concerning transverse momen-
tum spectra: the parameters describing the shape of dif-
ferent species should be approximately the same and the
extracted temperature should be in agreement with that
obtained from fits to the average multiplicities.

As far as the latter statement is concerned, a definite
answer cannot be given because we have in fact used mul-
tiplicity fits to pin down the temperature in the spectrum
fits. Yet, an independent indication of consistency is pro-
vided by the correlation between the temperature loca-
tion of the global χ2 minima in K+p and π+p collisions at
s1/2 = 21.7GeV and the corresponding 1σ band of Tch (see
Figs. 7, 8). A clearcut test would be the analysis of spec-
tra with ūT � 0, a situation that, in view of the present
analysis, is foreseen to occur in a small energy window
below s1/2 ≈ 20GeV. Focussing solely on the most accu-
rately measured spectra, namely charged pions, it can be
seen that ūT appreciably increases from s1/2 = 21.7GeV
to 27.4GeV (from 0.12–0.15 to 0.21) whilst T decreases
like Tch does, not a surprising fact because the Tch band
has been actually used to locate a suitable best-fit value
for T . On the other hand, if pion spectra are singled out
in all three examined collisions, their mimimum χ2 valleys
in Figs. 2, 3 and 4 nicely overlap and one might be led to
argue that, in fact, the spectra do not show any significant
change of shape from 21.7 to 27.4GeV. In the assumed sta-
tistical formalism, this lack of an observable broadening is
due to an accidental compensation between a decrease in
temperature and an increase in transverse four-velocity.
This effect would be essentially related to a decrease in
the chemical temperature Tch from 21.7 to 27.4GeV and
an indication of its physical genuineness would be the ap-
parent correlation between the best-fit global T and Tch
band in Figs. 7 and 8. However, for the present, such be-
havior of temperatures and transverse four-velocities and
the possible reason of it cannot be firmly established, as
discussed in Sect. 5.1 with regard to chemical tempera-
ture. It might well happen that, resorting to a more fun-
damental microcanonical description (with hadronization

occurring, for instance, at constant cluster energy density
M/V = const), a monotonic evolution of the parameters
governing pT and mass slopes as a function of the center-
of-mass energy is retrieved while the compensation effect
between T and ūT would be only the effect of enforcing
a canonical approximation. In general, this topic needs a
more detailed study.

Turning back to the first issue, whether the statistical
parameters describing the spectra are sufficiently universal
for different hadron species, we have seen in Sect. 5 that
rigorous statistical tests would rule out this possibility,
though a fully affirmative answer would have indeed been
unlikely because of the various approximations inherent to
the theoretical formulae. However, the implementation of
a single statistical test does not tell us the main sources
of the discrepancy between model and data and a fur-
ther investigation is necessary. As far as pp collisions are
concerned, it can be realized by looking at Table 3 and
the location of the minimum χ2 valleys in Fig. 2 and 5,
that the different fitted temperatures and tranverse four-
velocities are indeed in good agreement with each other
with the exception of K+ whose spectrum is seemingly
harder than expected and significantly different from the
K− one. The T and ūT central values extracted for η, ρ0

and f2 are affected by large uncertainties (χ2 minimum
valleys are much wider, see Fig. 2) so they are essentially
in agreement with the more accurate ones. The situation
is slightly worse in the other two examined hadronic col-
lisions, K+p and π+p at s1/2 = 21.7GeV. By inspecting
Table 3 and Figs. 3 and 4, several discrepancies can be no-
ticed: the π0 spectrum is harder than the π− one, K0

S ’s is
softer and K∗’s spectrum is much too soft; these features
are common to both collisions.

In order to assess the universality as a function of dif-
ferent hadron species, a very useful property is the so-
called mT scaling, a well-known feature of statistical and
thermal models [2,10]: if ūT = 0, the shape of the primary
spectrum of any hadron (except for charged pions at very
low pT, owing to quantum statistics corrections) depends
on its mass only through the variable mT = (p2

T +m2)1/2,
as shown in (115). The mT scaling is broken by a non-
vanishing transverse velocity and by the hadronic decay
chain but both are small effects for the ūT values found
in the present analysis, as can be seen in Fig. 13: the
scaling violation is limited to 25% at the top mT value
(� 2.4GeV) in the analyzed pp collisions. The general
trend of the scaling violation can be roughly summarized
with a relative softening of mT spectra of lighter particles
with respect to heavier particles.

The approximate mT scaling apparently holds in pp
collisions, for the most accurately measured spectra of pi-
ons and kaons. That this is a non-trivial fact is proved in
Fig. 14, where the actually measured and published [23]
p2

T spectra are compared with the corresponding spec-
tra transformed in the variable mT. While p2

T slopes are
markedly different between pions and kaons, their mT
slopes are much closer (heavier particle spectra are af-
fected by too large errors to allow any conclusion to be
drawn). On observing even closer, also the aforementioned
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data points are drawn to guide the eye

discrepancy between K+ and K− and the hardness of the
K+ spectrum show up; this is better seen in Fig. 15 where
predicted and measured ratios between the mT spectra of
K+ and K− with respect to the π+ spectrum are shown.
Although the model succeeds in predicting a slight dif-
ference between the slopes of K+ and K− (in the right
direction) owing to different resonance feeding (the collid-
ing system is not isospin symmetric), the observed ratios
with the π+ spectrum are steeper in shape, particularly
for K+, and the difference between K+ and K− is larger.
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Fig. 15. Ratio between mT spectra of kaons and π+ spec-
trum taken as reference. The experimental ratios (dots with
error bars) are calculated by using the measured kaon spectra
and the fitted π+ spectrum (parameters quoted in Table 3),
which is a very good approximation to the measured one. The
theoretical ratios are calculated by taking common values for
the relevant parameters, namely T = 160MeV and ūT = 0.2,
which are a fair average of values quoted in Table 3. The spec-
tra have been normalized so as to have the same value at the
threshold mT = mK . Lines connecting data points are drawn
to guide the eye

It is very difficult to understand the reason of this dis-
crepancy; at present, it can be attributed to deviations
from the model scheme (i.e. from the assumptions listed
at the beginning of Sect. 4) or to a systematic error in the
estimation of relative abundances of parent hadrons.

A similar behavior is observed in K+p and π+p colli-
sions: as shown in Figs. 16 and 17, the slopes of the mT
spectra are definitely much closer than those of the p2

T
spectra. However, in agreement with the previously ob-
served contour plots in Figs. 3 and 4 and with the values
quoted in Table 3, the π0 spectrum has a remarkably dif-
ferent shape at low mT with respect to the π− and K∗
spectra are definitely steeper than expected. The softness
of the K∗ spectrum could be related to the presence of
a valence strange quark in the initial state for K+p col-
lisions; yet it occurs in π+p collisions too. Unfortunately,
the spectra in both the K+p and the π+p collisions have
been measured by the same experiment, NA22, and this
prevents a cross-check on the data to assess the genuine-
ness of such similarities. Furthermore, there is little over-
lap between the particle sample in pp and K+p, π+p with
the exception of π0 and π−. In this regard, whilst in pp
collisions very good agreement is found between the mea-
sured slopes of the three pion species, a considerable dis-
crepancy is observed in both K+p and π+p collisions with
different initial colliding particles. Indeed, this apparent
violation of a nice scaling observed at a center-of-mass
energy only 6GeV higher is quite odd.
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K+p collisions at s1/2 = 21.7GeV. The p2T spectra have been
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p2T and the corresponding mT spectra of identified particles in
π+p collisions at s1/2 = 21.7GeV. The p2T spectra have been
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7 Summary and conclusions

Transverse momentum spectra of identified hadrons in
several high energy collisions have been compared to the
predictions of a statistical hadronization model, which has
been described in detail starting from a microcanonical
formulation, with emphasis on the assumptions needed to
introduce the usual concepts of single cluster tempera-

ture and volume. The distortion effect due to secondary
hadronic decays has been accurately and exhaustively
taken into account by a newly proposed numerical method.
A good agreement is found between model and data and,
on top of that, the temperatures estimated by fits to the
average particle multiplicities and those extracted by fit-
ting transverse momentum spectra are fully compatible
with each other. This is an indication in favor of one of
the key predictions of the statistical hadronization model,
namely the existence of a close relationship between the
production of particles as a function of their mass and, for
each particle species, the production as a function of mo-
mentum (measured in the rest frame of the cluster they
belong to) at the hadronization.

The model calculations have been performed by tak-
ing several assumptions. Firstly, the canonical framework
has been used, which is expected to fail at low center-of-
mass energies where the effect of exact transverse momen-
tum conservation must be significant and, in fact, in e+e−
collisions at a center-of-mass energy of 14GeV and K+p
collisions at 11.5GeV, a clear discrepancy between the
data and the calculations shows up. Secondly, the approx-
imation of very small average transverse velocity of the
clusters has been introduced, which should break down
at high center-of-mass energy because of the increasingly
large pT parton emission (giving rise to clusters with large
transverse velocity). At very high energy, this effect is pre-
dominant in determining the shape of the transverse mo-
mentum spectra whereas hadronization plays the role of
a small superimposed smearing noise. Indeed, it is found
that even at moderately high energy e+e− collisions, at
s1/2 = 35GeV, the approximate formulae are no longer
able to reproduce the shape of experimental charged par-
ticle spectrum and the resulting transverse four-velocity is
not consistent with the initial requirement. In summary,
the presently used parametrization of the pT spectra is
found to work well only in a limited center-of-mass energy
range (roughly between 20 and 30GeV).

In order to further investigate the statistical features of
hadronization, a study of the pT spectrum at lower center-
of-mass energy would be very interesting, but full complex
microcanonical calculations are required.
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Appendix
A Proof of the reduction to the EGC

We want to prove by direct transformation that

Ω =


 N∏
i=1

∑
Qi

∫
d4Piθ(P 0

i )Ωi


 δ4(P −ΣiPi)δQ,ΣiQi

(A.1)
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is the density of states of an EGC with four-momentum
P =

∑
i Pi, quantum numbers Q =

∑
i Qi and volume

(in the reference frame where the four-momentum is P )
V =

∑
i Vi. Let us consider the integral representation of

Dirac’s and Kronecker’s δ:

δ4(P −ΣiPi) =
1

(2π)4

∫
d4xei(P−ΣiPi)·x, (A.2)

δQ,ΣiQi
= lim

η→0

1
(2π)n

∫ π

−π

dnφei(Q−ΣiQi)·φ−Σiηi·Qi ,

where η = (η1, · · · , ηn) is a set of real positive numbers
which are introduced in order to regularize the infinite
sums for quantum numbers running from 0 to +∞, such
as the absolute number of strange quarks. By using (A.2)
we can rewrite (A.1) as

Ω =
1

(2π)4+n

∫
d4x

∫ π

−π

dnφeiP ·x+iQ·φ (A.3)

×

 N∏
i=1

lim
η→0

∑
Qi

∫
d4Pie−iPi·x−iQi·φ−ηi·Qiθ(P 0

i )Ωi


 .

Let us focus on the single ith factor in the above product.
If one plugs in it the expression (6) of Ωi

4 and the θ
function’s integral representation

θ(P 0
i ) =

1
2πi

∫ +∞−iε

−∞−iε
dα

eiαP 0
i

α
, (A.4)

the following expression is obtained:

lim
η→0

1
2πi

∑
Qi

∫
d4Pi

∫ +∞−iε

−∞−iε
dα
∫

d4xi

∫ π

−π

dnφi

×eiαP 0
i −iPi·(x−xi)−iQi·(φ−φi)−ηi·Qi

α
eF (xi,φi), (A.5)

where the limit η → 0 is implied. The integration in Pi
in (A.5) formally (that is, in a distributional sense) yields
(2π)4δ(x0

i − x0 + α)δ3(xi − x). On the other hand, the
sum over the quantum number vectors Qi yields, for its
generic kth component

2πδ(φk − φik), if Qik = −∞, · · · ,+∞; (A.6)

lim
ηk→0

1
1 − exp[i(φik − φk) − ηk] , if Qik = 0, · · · ,+∞.

In fact, the second expression in the above equation is also
equivalent to a δ distribution. This can be shown through
a transformation of the integration in φi over the interval
(−π, π) onto the unitary circle in the complex plane by
setting w = exp[−iφik]:

lim
ηk→0

∫ π

−π

dφik
1

1 − exp[i(φik − φk) − ηk] e
F (xi,φi)

= lim
ηk→0

1
i

∮
dw

exp[Fw(xi, φ1, · · · , w, · · · , φn)]
w − e−iφk−ηk

. (A.7)

4 The integration over the line (−∞ − iε,+∞ − iε), with
ε → 0 in the complex plane for all x0

i s, as well as for x
0, is

implied

The function Fw (see (9)) is analytic with respect to the
complex variable w as only positive integer powers of w
are involved (the qkjs are positive integer numbers by as-
sumption) and the pole e−iφk−ηk lies within the unitary
circle. Thus, the result of the integral in (A.7) is simply

lim
ηk→0

2π exp[Fw(xi, φi1, · · · , e−iφk−ηk , · · · , φin)]
= 2π exp[F (xi, φi1, · · · , φk, · · · , φin)], (A.8)

which is the same result that would have been obtained
by integrating with a δ distribution. Of course, the same
procedure may be repeated for all components other than
k. Eventually, the integrations in xi and φi in (A.5) yield

lim
ε→0

1
2πi

∫ +∞−iε

−∞−iε
dα

exp[F (x0 − α,x,φ)]
α

. (A.9)

This integral can be calculated by closing the z = −iε line
with a semicircle lying in the upper half of the complex
plane and taking the limit for the circle radius going to
infinity. Since the function F is analytic with respect to α
(see (9)), the result is simply

exp[F (x0,x,φ)] = exp[F (x,φ)], (A.10)

which is the final form of expression (A.5). Now the func-
tion F depends on the particular ith cluster only through
the volume Vi with a simple linear relationship, namely
F (x,φ) ≡ Vif(x,φ) (see (9)). Therefore, the product of
all the factors (A.5) yields

exp

[∑
i

Vif(x,φ)

]
, (A.11)

and this is the final form of the expression between square
brackets in (A.3). Hence, the Ω function reads

Ω =
1

(2π)4+n

∫
d4x

∫ π

−π

dnφeiP ·x+iQ·φe(ΣiVi)f(x,φ).

(A.12)

B Decomposition of Lorentz transformations

A general Lorentz transformation Λ can be uniquely de-
composed as the product of a transformation like in (42)
and a general rotation [17]:

Λ = LR, L = R̂3(ϕ)R̂2(θ) L̂3(ξ), (B.1)

where ϕ ∈ [0, 2π), θ ∈ [0, π] and ξ ≥ 0 (see (42)).
Any timelike vector can be uniquely written as L(t̂)

where t̂ = (1, 0, 0, 0) is the time axis unit vector and L like
in (42) and (B.1) [17]. Hence, given two timelike vectors
P ′ = L′(t̂) and P = L(t̂) there is only one Lorentz trans-
formation of the type (42) and (B.1) transforming P ′ into
P , namely L′′ such that L′′(t̂) = LL′−1(t̂).
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In order to prove the alternative decomposition of L in
(79), it is sufficient to show that the equation

R̂3(ϕ)R̂2(θ) L̂3(ξ)(t̂) = L̂3(η)R̂3(φ) L̂1(ζ)(t̂), (B.2)

with φ ∈ [0, 2π), η ∈ (−∞,+∞) and ζ ≥ 0, establishes a
biunivocal correspondence between the two sets of coor-
dinates. Equation (B.2) leads to the system of equations

cosh ζ cosh η = cosh ξ,
sinh ζ cosφ = sinh ξ sin θ cosϕ,
sinh ζ sinφ = sinh ξ sin θ sinϕ,

cosh ζ sinh η = sinh ξ cos θ, (B.3)

whose solution is

cosh ξ = cosh ζ cosh η,

tan θ =
tanh ζ
sinh η

,

ϕ = φ, (B.4)

and its inverse

cosh η =
cosh ξ√

1 + sinh2 ξ sin2 θ
,

sinh ζ = sinh ξ sin θ,
φ = ϕ. (B.5)

Therefore, if (42) is a valid decomposition, (79) holds as
well, within the relevant variable domains.

The associated invariant measure in the variables ζ, η
and φ can be obtained by calculating the jacobian of the
transformation (B.4) and taking into account that dL =
sinh2 ξ sin θdξdθdϕ [18]. It is advantageous to rewrite the
above measure as dL = sinh ξd cosh ξd cos θdϕ and use the
following transformation formulae derived by (B.4) and
(B.3):

cosh ξ = cosh ζ cosh η,

cos θ =
cosh ζ sinh η√

cosh2 ζ cosh2 η − 1
,

implying

|det J | = cosh ζ sinh ζ√
cosh2 ζ cosh2 η − 1

, (B.6)

and, consequently,

dL =
sinh 2ζ

2
dζdηdφ. (B.7)

C Calculation of the secondary contribution
to the transverse momentum spectrum

The integration of (111) is performed by solving the δ
function with respect to the ϕ azimuthal angle according
to the well-known formula

δ(f(ϕ)) =
∑
i

1
|f ′(ϕ0i)|δ(ϕ− ϕ0i), (C.1)

where ϕ0i are the zeroes of the f function. In the present
case (see (112))

f(ϕ) = x− γ̄Tε− ūTpT cosϕ. (C.2)

Thus

cosϕ0 =
γ̄Tε− x
ūTpT

, (C.3)

|f ′(ϕ0)| = ūTpT

√
1 − cos2 ϕ0.

There are two angles fulfilling (C.4) in the [0, 2π) interval,
provided that the absolute value of its right hand side is
< 1. For these angles, the absolute value of the derivatives
in the lower equation are equal. Hence, the integration in
(111) in the azimuthal angle yields 2 if |γ̄Tε− x| < ūTpT
and 0 otherwise. Therefore, (111) turns into

〈
dn
dpT

〉k→j

= 2
∫ +∞

mj

dx
∫ +∞

−∞
dpz

pT

4πε
√
x2 −m2

j

〈
dn
dε∗

〉k→j

(x)

× θ(ūTpT − |γ̄Tε− x|)√
u2

Tp
2
T − (γ̄Tε− x)2

. (C.4)

The next integration can be done with the change of vari-
able pz = mT sinh y, i.e. by introducing the rapidity, so
that ε = mT cosh y and (C.4) reads

〈
dn
dpT

〉k→j

= 4
∫ +∞

mj

dx
∫ +∞

0
dy

pT

4π
√
x2 −m2

j

〈
dn
dε∗

〉k→j

(x)

× θ(ūTpT − |γ̄TmT cosh y − x|)√
u2

Tp
2
T − (γ̄TmT cosh y − x)2

, (C.5)

where advantage has been taken of the fact that the inte-
grand is even in the rapidity. The last needed change of
variable is z = cosh y, leading to

〈
dn
dpT

〉k→j

= 4
∫ +∞

mj

dx
∫ +∞

1
dz

pT

4π
√
x2 −m2

j

〈
dn
dε∗

〉k→j

(x)

× θ(z − z−)θ(z+ − z)
γ̄TmT

√
(z − 1)(z + 1)(z − z−)(z+ − z) , (C.6)
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where z+ and z− are defined in (114) and, obviously, γ̄T =
(1 + u2

T)
1/2. The integral in the z variable is an elliptic

integral whose solutions depend on the sign of z− − 1;
they can be found in [59]:

∫ +∞

1
dz

θ(z − z−)θ(z+ − z)√
(z − 1)(z + 1)(z − z−)(z+ − z)

=
2√

(z+ − zmin)(zmax + 1)
F
(π
2
, r
)
, (C.7)

where zmin, zmax and r are quoted in (114) and F is the
complete elliptic integral of the first kind. After the sub-
stitution of x with momentum p∗ = (x2 −m2

j )
1/2 as inte-

gration variable in (C.6), the final result is exactly as in
(113).

D Calculation of the partition function
with fixed number of strange quarks

In this section we describe the technique used to handle
the numerical integration of canonical partition functions
with four fixed quantum numbers, namely electric charge
Q, baryon number B, strangeness S and number of s+ s̄
quarks NS . This can be written as in (102) with n = 4
and λj = 1:

Z(Q) =
1

(2π)4

∫ π

−π

d4φ exp[iQ · φ + Fc(φ)], (D.1)

with Q = (Q,B, S,NS) and

Fc(φ) =
V

(2π)3
∑
j

(2Jj +1)
∫

d3p log[1±e−εj/T−iqj ·φ]±1.

(D.2)
Straightforward numerical four-dimensional integration is
too time consuming to allow one to have reasonably quick
multiplicity fits: an analytical reduction of the above inte-
gral is indeed necessary. For this purpose, we first integrate
out the φB variable associated with baryon number. This
can be done analytically because of the presence of only
single-valued baryons in the function Fc in (D.1), neglect-
ing the corrections due to Fermi statistics which are very
small. Thus

Fc(φ) = Fc(φQ, φS , φNS
)mesons +W+e−iφB +W−eiφB ,

(D.3)
where

W± =
∑
bar.

antibar.

zj exp[−i(QjφQ + SjφS +NSjφNS
)],(D.4)

zj ≡ V (2Jj + 1)
(2π)3

∫
d3p exp[−εj/T ]. (D.5)

It must be stressed thatW+ �=W ∗
− because the number of

strange quarks is the same for both particles and antipar-
ticles. The integration in φB in (D.1) can be performed by

using the decomposition (D.3) and a series is obtained:

1
2π

∫ π

−π

dφBeiBφB exp[W+e−iφB +W−eiφB ]

=
∞∑
k=0

W k+B
+ W k

−
k!(k +B)!

. (D.6)

Then the integration in φNS
in (D.1) is performed. It is

advantageous to set w = exp[−iφNS
] and map the interval

[−π, π) onto the unitary circle in the complex plane:
1
2πi

∮
dw
w
w−NSΣ(w) exp[F̃M(w)], (D.7)

where
F̃M(w) = Fc(φQ, φS , φNS

)mesons, (D.8)
and Σ is the series in (D.6). Since mesons can contain
at most two strange quarks, the function F̃M(w) can be
written as the sum of three terms:

F̃M(w) = α+ βw + γw2, (D.9)

where α, β and γ are the sums Σjzj exp[−iQjφQ − iSjφS ]
over mesons with 0, 1 and 2 strange quarks respectively.
As baryons may contain at most three strange quarks, the
functions W+(w) and W−(w) in (D.5) are third-degree
polynomials in w with conjugate coefficients A0, · · · , A3
depending on φQ and φS , i.e.

W+(w) =
3∑

n=1

Anw
n, W−(w) =

3∑
n=1

A∗
nw

n, (D.10)

and, consequently, the series Σ(w) in (D.6) is an analytic
function of w. Hence, the integrand in (D.7) has one pole
of NSth order in w = 0 and the integral (D.7) turns out
to be

exp[α]
NS !

dNS

dzNS
exp[βw + γw2]Σ(w)

∣∣∣
w=0
. (D.11)

The derivative can be calculated along any direction and
particularly along the real axis. Finally, the partition func-
tion in (D.1) reads

Z(Q) =
1

(2π)2

∫ π

−π

dφQ
∫ π

−π

dφSeiQφQ+iSφS+α(φQ,φS)

×D
NSΣ(x) exp[β(φQ, φS)x+ γ(φQ, φS)x2]|x=0

NS !
,

(D.12)

which is to be integrated numerically within its two-
dimensional domain.

The next problem is how to calculate the derivative in
the integrand in (D.12). We first notice that the series Σ
can be calculated analytically for a real argument because
W+(x) =W ∗

−(x) (see (D.10)):

Σ(x) =
∞∑
k=0

W+(x)k+BW ∗
+(x)

k

k!(k +B)!

= IB(2|W+(x)|) exp[iB argW+(x)]

=
IB(2|W+(x)|)
(2|W+(x)|)B (2W+(x))B , (D.13)
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where IB is the modified Bessel function of order B. The
derivative of order NS is then expanded:

DNSΣ(x) exp[βx+ γx2]

=
NS∑
k=0

(
NS

k

)
Dk exp[βx+ γx2]DNS−kΣ(x). (D.14)

It can be shown with a little algebra that

Dk exp[βx+ γx2]
∣∣∣
x=0

= k!
k∑

j≥k/2

β2j−kγk−j

(2j − k)!(k − j)! .

(D.15)
The derivative of Σ(x) can be further expanded:

DkΣ(x) =
k∑

l=0

(
k

l

)
Dl IB(2|W+(x)|)

(2|W+(x)|)B D
k−l(2W+(x))B .

(D.16)
The derivative of the first factor in the above sum can be
calculated by taking advantage of recurrence relations for
Bessel function derivatives:

D
IB(2|W+(x)|)
(2|W+(x)|)B =

IB+1(2|W+(x)|)
(2|W+(x)|)B+1 2D|W+(x)|2, (D.17)

while for the second factor

D(2W+(x))B = B(2W+(x))B−1DW+(x). (D.18)

The two equations above are the starting point for the
numerical calculation of the derivative in (D.16); a recur-
sive algorithm has been implemented that computes it for
x = 0, taking into account that (see (D.10))

IB(2|W+(0)|)
(2|W+(0)|)B =

IB(2|A0|)
(2|A0|)B ,

Dl|W+(x)|2
∣∣∣
x=0

= l!
l∑

n=0

AnA
∗
l−n,

DlW+(x)
∣∣∣
x=0

= l!Al.

References

1. E. Fermi, Progr. Theor. Phys. 5, 570 (1950)
2. R. Hagedorn, N. Cim. Suppl. 3, 147 (1965)
3. F. Becattini, Z. Phys. C 69, 485 (1996)
4. F. Becattini, Proceedings of XXXIII Eloisatron Workshop
on Universality Features in Multihadron Production and
the leading effect (1996) 74, hep-ph 9701275

5. F. Becattini, U. Heinz, Z. Phys. C 76, 269 (1997)
6. U. Heinz, Nucl. Phys. A 661, 140 (1999)
7. R. Stock, Phys. Lett. B 456, 277 (1999)
8. R. Hagedorn, CERN lectures Thermodynamics of strong
interactions (1970) 46

9. R. Hagedorn, Hot Hadronic Matter: Theory and Experi-
ment (1994) 13 and references therein

10. R. Hagedorn, Riv. N. Cim. 6, 1983 (1984)

11. J. Sollfrank, P. Koch, U. Heinz, Phys. Lett. B 252, 256
(1990)

12. J. Sollfrank, P. Koch, U. Heinz, Z. Phys. C 52, 593 (1991)
13. U.A. Wiedemann, U. Heinz, Phys. Rev. C 56, 3265 (1997)
14. T. Peitzmann, Nucl. Phys. A 638, 415c (1998)
15. G. Marchesini, B. Webber, Nucl. Phys. B 238, 1 (1984)
16. For a description of the model in the canonical approxima-

tion see F. Becattini, Proceedings of XI Chris Engelbrecht
summer school Hadrons in dense matter and hadrosynthe-
sis (1998) 71

17. W.K. Tung, Group theory in physics (World Scientific, Sin-
gapore)

18. W. Ruhl, The Lorentz group and harmonic analysis (W.A.
Benjamin, New York 1970)
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