Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

State of the Art on HTS Power Cable Systems and Cable Cryostats – The AmpaCity Project

Rainer Soika, Mark Stemmle – Nexans Deutschland GmbH

Frank Merschel – RWE Deutschland AG

Grenoble, June 5, 2015

> Part 1: The AmpaCity Project

- AmpaCity Project Overview
- Technical Characteristics and Type Testing
- Installation, Commissioning, Operation
- > Part 2: Flexible Superconducting Cable Cryostats (Cryoflex®)
 - Requirements for Superconducting Cable Systems
 - Flexible Cryostat Development and Service History

- > 10 kV, 40 MVA three-phase HTS system
 - > 1 km long HTS power cable rated at 2.3 kA
 - > Resistive HTS fault current limiter
- > Cable joint halfway between substations
- > 'Closed loop' LN2 refrigeration system
- > Operating temperature ~ 70 K
- > Funded by the German Federal Ministry of Economics and Technology

- Installation of HTS system in the German City of Essen
- > Investigation of technical feasibility of HTS systems in distribution grids
- > Investment comparison of 10 kV HTS systems as alternative to conventional 110 kV systems
- > Evaluation of technical operation advantages
- > Assessment of further HTS cable and FCL technology applications

> RWE

- Specification of HTS system to be installed in distribution grid
- Field test of HTS system connecting two substations

> Nexans

- Development of HTS cable including type test of all components
- Manufacturing of HTS cable system and HTS fault current limiter

> KIT

- HTS tests and characterization
- AC loss measurements and modeling (FEM 2D and 3D)

Motivation

Previous Electrical Configuration

Karlsruhe Institute of Technology

7

Electrical Configuration with Superconducting System

AmpaCity Installation in Essen, Germany

Substation Herkules

Federal Ministry for Economic Affairs and Energy

10

Substation Dellbrügge

VORWEGGEHEN Mexans

Federal Ministry for Economic Affairs and Energy

11

Cable Design

Termination Design

13 Proiektträger Jülic

Fault Current Limiter Design

Parameter	Value
Rated power	40 MVA
Rated voltage	10 kV
Rated current	2.3 kA
Lightning impulse withstand voltage	75 kV
Power frequency withstand voltage	28 kV
Prospective peak short circuit current	50 kA
Prospective short circuit current	20 kA
Limited peak short circuit current	< 13 kA
Limited short circuit current	< 5 kA
Limitation time	100 ms

Karlsruhe Institute of Technology

Cooling System Design

- > 4 kW cold power at 67 K
- > Subcooled pressurized nitrogen
- > Forced flow in closed circuit
- > High availability and reliability

- > Testing in accordance to DIN VDE 0276-620
- > PD test at 20 kV (after 24 kV for 1 min)
- > 20 load cycles with 2.3 kA (3 phase)
- > PD test at 20 kV (after 24 kV for 1 min)
- > Lightning impulse test at ± 75 kV
- > AC voltage withstand test at 30 kV (4 h)

Prototype Setup for Type Test

VORWEG GEHEN Mexans

Prototype Joint and Termination

VORWEG GEHEN Mexans

Loading of Cable Drum in Hannover

Cable Drum Trailer at Joint Bay

Cable Pulling First Length

Installation in Substation Dellbrügge

VO**RWE**G GEHEN *M*exans

Federal Ministry for Economic Affairs and Energy

22

Installation of Cable Joint

Commissioning Test

VO**RWE**G GEHEN *M*exans

- > Standard cable testing with cable test van
- > PD test of each phase (20 kV at 0,1 Hz)
- > Loss factor diagnoses (10 kV, 15 kV, 20 kV at 0,1 Hz)
- > AC voltage withstand test (30 kV at 0,1 Hz for 1 h)

AmpaCity Milestones and Status

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

ехалѕ VORWEG GEHEN Mexans Karlsruhe Institute of Technology

Machines & Cryogenic Systems

© Nexans 2015

MACHINES & CRYOGENIC SYSTEMS Cryoflex®

Superconducting cable cryostat <u>must</u> be bendable so it can be installed like a cable

Corrugation process results in a bendable (flexibe) tube

Additional requirements: •Low heat inleak •Long term vacuum •Limited welding on site

MACHINES & CRYOGENIC SYSTEMS Brief Overview of Manufacturing Process

© Nexans 2015

MACHINES & CRYOGENIC SYSTEMS Cryoflex[®] Installation

MACHINES & CRYOGENIC SYSTEMS Cryoflex[®] Standard Transfer Line

Single flow channel, common in LN2 applications Same design as HTS Power Cable Cryostat for LN2

- 1. Corrugated inner pipe
- 2. Spacer
- 3. Superinsulation
- 4. Vacuum space
- 5. Corrugated outer pipe
- 6. Jacket

CRYOFLEX[®] 2-tube design for Superconducting HTS Cables

- 60/110 ... 100/163 Typical Diameters (mm):
- Single piece lengths: > 600 m for 84/143
- Bending Radii (Single Bend) (m): \geq
- Heat Inleak (W/m):
- **Rated Pressure:** >
- Vacuum:
- Seals:
- Vacuum measurement port: \geq

- 1,0 ... 1,5
- 1,2 ... 2,0
- Up to 20 barg
- Long-term static, use of getter materials
- Permanent metal
- Spinning Rotor Gauge (if desired)

© Nexans 2015

MACHINES & CRYOGENIC SYSTEMS Cryoflex[®] 4-tube design

4-Tube Coaxial Transfer Line for liquefied gases

- Typical design for LHe applications
- Shielding by He gas or LN2
- Extremely low heat inleak
 - 0.03 W/m for 10 mm ID (77 K shield)
- 2 flow channels
- Long length between couplings

MACHINES & CRYOGENIC SYSTEMS CRYOFLEX[®] 4-tube design for Superconducting LTS/HTS Cables

Operating media

LHe, GHe, ...

- Diameters (mm):
- Single piece lengths:
- Heat Inleak (W/m):

up to 84 mm ID / 220 mm OD

several hundred meters

depending on shield temperature and mechanical load

- Implemented in TOKI project (NIFS, Japan, 1988)
 - Current feeder for LHD (32 kA)
- Under consideration for CERN Hi-Luminosity upgrade

MACHINES & CRYOGENIC SYSTEMS Selected References – Transfer Lines

1980: CERN

- Several 4-tube transfer lines
- LHe transfer lines, vapour shielded
- Total length: 400 m

1982: J E T - Joint European Torus (Experimental Fusion Reactor)
6-tube design

(4-tube LHe/GHe with additional LN2 shielding)

1989: Ariane rocket engine test facilities
2 x 300 m LOX, 2 x 300 m LH2
Inner diameter: 127 mm

2008: National Synchrotron Radiation Research Center (NSRRC), Taiwan > 2 x 200 m of LN2-shielded He-Lines (LHe supply/GHe return)

MACHINES & CRYOGENIC SYSTEMS Selected References – SC Cable Cryostats

1998: TOKI Project (NIFS, Japan) – LTS Cable for Fusion Technology

- 5 tube design with LTS
- > 9 x 50 m, 220 mm OD
- Complex installation path

2007: LIPA Power Cable Project, Long Island, NY3 x 600 m cable cryostat

2013: FGC (Russia), St. Petersburg Project
2.4 km cable cryostat
2.4 km return line

2013: AmpaCity Project1 km cable cryostat

Machines & Cryogenic Systems

Machines & Cryogenic Systems

Mexans

Leading in Flexible Transfer Line Solutions for Cryogenic Liquids

Mexans.

Excellence in Forming & Welding Technologies

Thank You For Your Attention!

Contact: rainer.soika@nexans.com

© Nexans 2015