

Jean Louis Lizon European Southern Observatory Karl Schwarzschild Str-2 D 85748 Garching

1980: Cryogenics enters in ground based astronomy
1st IR detectors 1x1 (LN2 and He cooled)
1982: Installation of the first large echelle spectrograph
Instrument LN2 cooled
Det: 32x1 He cooled

_ || | | += ++ || == || == || == || == |+ |₭ | ⊗ == ||

1992 Approval of the VLT

Telescopes: From 3.6m to 8m Detector: Permanently growing

Filter wheel for instrument 80th

Filter wheel for instruments (VLT)

Jean Louis Lizon/ ESO/ Garching

3

> IHE Cabinets

CACOR

ICE

Cabinets

Mosaicking and clustering of Instruments and

Autti-IFU Conce

Requirements

Temperatures	Purpose	Power requirements	Locations (number) of duties		
			Nasmyth A	Nasmyth B	Coudé
230 K (T1)	Optical detectors	404 W	16	10	
105 K (T2)	NIR ins. optic	1579 W	3	28	1
65 K (T3)	NIR detectors	400 W	10	28	
27 K (T4)	MID IR optics	20 W		2	
5 K (T5)	MID IR detectors	35 W		2	

Tradeoff study to compare 3 different technology combinations

Schematic implementation of a forced flow cooling system

Schematic implementation of open loop LN2 cooling

Schematic implementation of Mechanical Cooler

Result of the tradeoff study

		Mechanical Coolers + LN2 pre-cool		Forced convection He + Mechanical Coolers		Open LN2 Cooling + Mechanical cooler	
Criterion	Weight	Score	Mark	Score	Mark	Score	Mark
	(W)	(S)	(S*W)	(S)	(S*W)	(S)	(S*W)
Vibration	5	1.5	7.5	4.25	21.25	4.25	21.25
Running cost	2	2.4	4.8	4.5	9	3.1	6.2
Power consumption	3	2.8	8.4	4	12	3.2	9.6
Capital cost	2	5.8	11.6	1.4	2.8	2.8	5.6
Installation effort	2	5.5	11	2.25	4.5	2.25	4.5
Technology readiness	4	4.25	17	1.5	6	4.25	17
Dome seeing, tel. perf.	3	1.5	5.5	5.5	16.5	3	9
Telescope service	1	5.5	5.5	1.5	1.5	3	3
Reliability	4	3.33	13.32	3.33	13.32	3.33	13.32
Failure mode	4	1.5	6	3	(12	5.5	22
Scalability	3	5.5	16.5	1.5	4.5	3	9
Impact on instrument	3	1.5	4.5	4.25	12.75	4.25	12.75
AIV support	3	3	9	1.5	6	5.5	16.5
TOTAL			120.62		122.12		149.5

+ES+ 0 +

Cryogenics for E ELT

LN2 on site production in the service rooms LN2 and Helium high pressure supply Nas. B Nas. A P.AN

Main Structure ~ 2500 tons of steel moving 700 tons of optomechanics and electronics around two perpendicular axes (azimuth and altitude) Hydrostatic bearings driven by electrical direct drive motors with a precision of 0.3 arcsec under the maximum wind disturbance. Instruments about 30 m

above the ground

38 m diameter Altitude Structure 65 m height 71 m width Azimuth Structure Telescope foundation and 52m diameter

Azimuth tracks

10 💶 💵 🍉 🗄 ┿ 💵 💻 💵 💷 💷 🖼 🖶 😹 🐼 🛶 🕒

+ES+ 0 +

Cryogenics for E ELT

Examples of E ELT instruments Difficulties to get optical quality at short wavelengths $\rightarrow 1^{st}$ Generation mainly IR instruments

11

▶ # # # | | = | | = | | ... | ... | # ₩ ⊙

Jean Louis Lizon/ ESO/ Garching

Base line solution for T4 and T5

Pulsed Tube (PT410) cooler from CryoMech

2nd stage and 1st stage combined power:	1W @ 4.2K with 35W @ 45K (at 50 and 60 Hz)			
Lowest Temperature:	0W @ 2.8K			
Cool down time to base temperature:	60 minutes to 4K			
Input Power - Water Cooled:	8.4kW @ 60Hz, 7.9kW @ 50Hz			

Alternative solutions for T4 and T5 and eventually other intermediate temperatures

Jean Louis Lizon/ ESO/ Garching

Location and status of the project

Construction 2014-2024, on Cerro Armazones (3000 m above see level, Atacama desert)

As *integral part* of the Paranal Observatory ('one more telescope')

ESO cost: ~1100 MEUR incl. instruments and contingency

- - - + *

Jean Louis Lizon/ ESO/ Garching

16 🔤 🖬 🕨 🕶 🛨 📕 💻 🖬 💶 🖬 🛨 💥 🐼 🛶 🛍