
THALES

Stirling and Pulse Tube type compressors for space applications

TONNY BENSCHOP*, JEROEN MULLIÉ
THALES CRYOGENICS BV, EINDHOVEN, THE NETHERLANDS

Contents

- **Thales Cryogenics**
- "High frequency" Stirling and Pulse Tube coolers
- Matching of compressor and cold finger
- Compressor definitions
- Design criteria for Space
- Performance of the designs
- Conclusions

Markets served by the Thales group

DUAL MARKETS

Military & Civil

TRUSTED PARTNER FOR A SAFER WORLD

Thales Cryogenics organization

Thales Cryogénie SAS

4. rue Marcel Doret BP 70022 31701 Blagnac Cedex

France

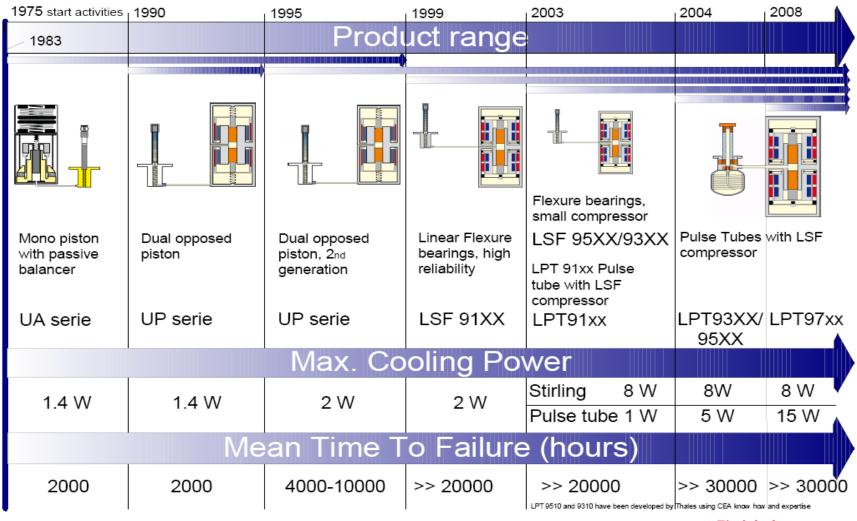
Tel: 33 (0) 5 62 74 58 00 Fax: 33 (0) 5 62 74 58 58

- Rotary coolers
- Joule Thomson coolers
- High Pressure Vessels

Thales Cryogenics BV

Hooge Zijde 14 PO Box 6034 5600 HA Eindhoven The Netherlands

Tel: (31 40) 250 36 03 Fax: (31 40) 250 37 77


- Linear coolers
- Pulse tube coolers
- System integration
- Space cooler / compressors

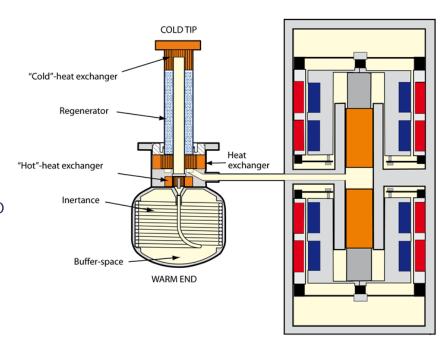
One global vision for your cryocooling solutions

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved.

Thales Cryocooler development history

Field data: > 45.000 hrs Field data:

> 90.000 hrs


High frequency coolers

Compressor

- > Transfer of electrical power in a pressure wave.
- > Typical operating frequency between 25 and 150 Hz.
- *Resonance type": the drive frequency has to be aligned with the eigen Frequency of the piston mass and spring stiffness

Cold finger

- Pulse tube or Stirling technology depending on the application needs.
- Both technologies use the pressure wave and gas movement of the compressor to produce a heat flux from "cold end" to "warm end"
- Thermodynamic operating frequency depends on detailed design of the cold finger.

Requirements on final area of use

Military markets


Enable for sensing IR systems

Civil markets

- Deliver a solution for cooling of devices
- Replace cryostats with liquid evaporation
- Cooling of HTc devices
- Proven reliability / simple maintenance

Space markets

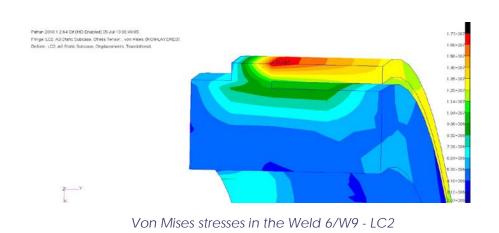
- > Enabling of sensing
- Reliability / Availability is key
- Stringent requirements on weight and efficiency

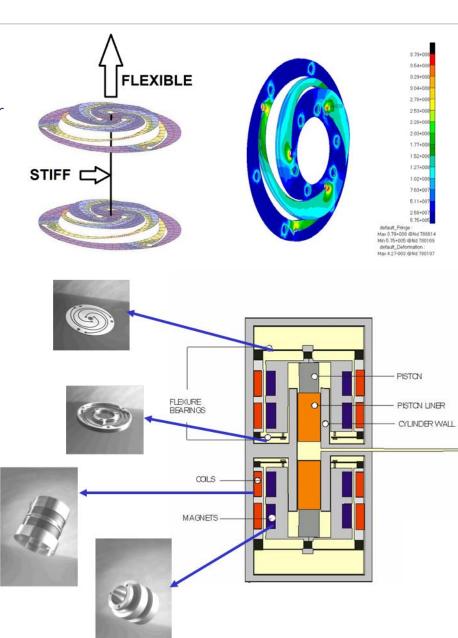
Design criteria for space compressors

- ➤ Reliability / availability
- > Efficiency of the electromotor
- > Vibrations exported to the structure / system

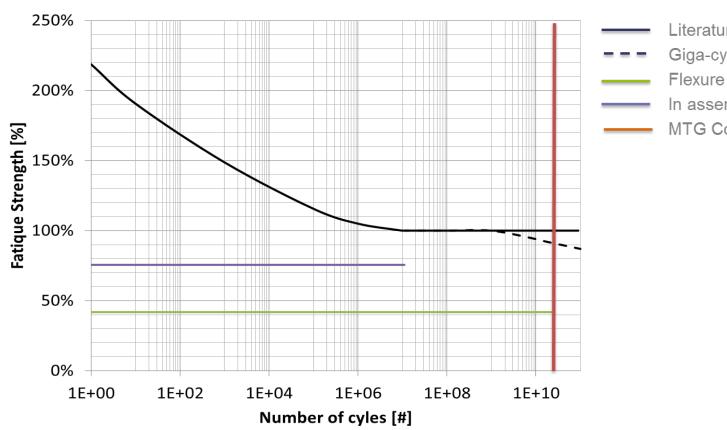
MPTC compressor

LPTC compressor


15K compressor



Reliability / Availability

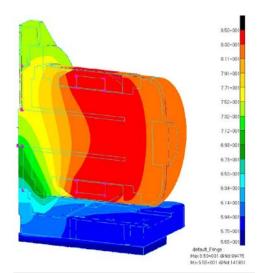

Avoid wear

- Minimize contact between Piston / Cylinder
- Avoid outgassing components
 - Coils outside of Helium
- High focus on structural integrity
 - Conform ESA design guidelines and accepted simulation tools.

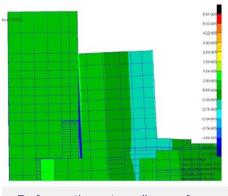
Example of design criteria and validation plan of a flexure design for space coolers

Literature Material S/N curve Giga-cycle regime Flexure stress at maximum input power

In assembly screening test level MTG Compressor operational lifetime


Presented @ 5th European Space Cryogenics Workshop - 2013

Optimal motor design (more complex design)


- Civil Cost driven:
 Single axial magnet per motor part
- > Space Efficiency / weight driven:

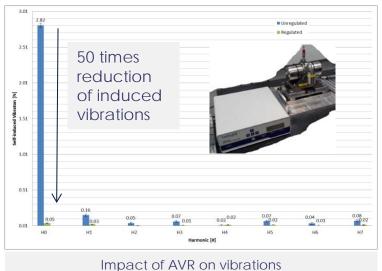
 More complex motor systems with even 4 pole radial magnetized magnets per motor part.

Temp distribution over compressor

- Optimal heat sinking (use of different materials)
 - Inconel for high strength
 - Titanium for strength and low density but low thermal conduction
 - Aluminum for adequate heat sinking and low density but low strength
 - Different connections techniques required for helium tight connections between different materials

Deformation at sealing surface

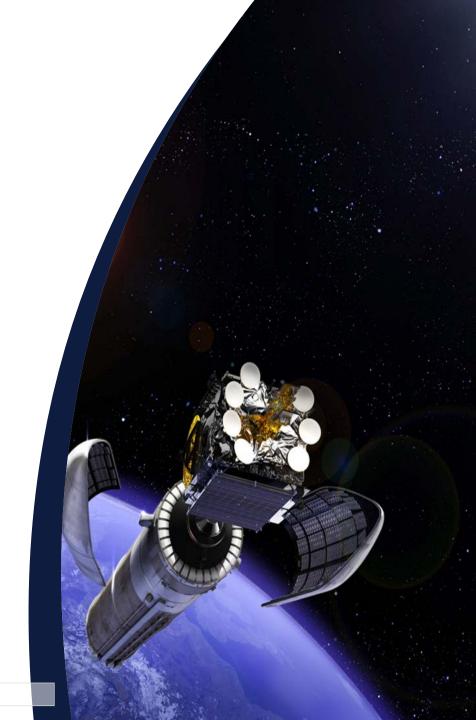
Vibrations of cooler / compressor


Cooler induced vibrations are critical for Space applications thus:

- Choice for PT cold fingers
- Choice for compressor with AVR drive electronics (axial movement)
- Requirements of flexible / active support for damping of remaining vibrations

Piston friction verification

By design manufacturers are required to:


- Minimize off-axis vibrations by design & MAIT
- Correct motor balancing / matching to limit on-axis vibration
- Ensure proper alignment verification of flexures / pistons

THALES

Examples of Thales Space compressors / coolers

Various ESA TRP funded developments

MPTC

Compressor for Miniature Pulse-tube Cooler 80K cooler

ESA Contract 14896/00/NL/PA , started in 2002. Partners: Air Liquide, CEA

Product status

Compressor now used for new cooler (Cooperation with external party)

er

15K

Cryocooler Drive Electronics for Space ESA Contract 4200023025/10/NL/AF Partners: Air Liquide, CEA

Product status

Engineering model currently under test

LPTC

Compressor for Large heat lift pulse-tube cooler 40-80K application

ESA Contract 18433/04/NL/AR, started in 2004 Partners: Air Liquide, CEA

Product status

Used for various flight programs

30-50K

Two-stages cooler and cryostat ESA Contract 4000109933/14/NL/RA

Partners: Absolut System, CEA Thales as prime contractor

Product status
PDR held at ESTEC

Image: Air Liquide

MTG - Under qualification / production

ProjectMeteosat Third Generation

Also referred to as MTG

ApplicationWeather forecasting
Weather monitoring

Context
Air Liquide manufactures cryocooler
Thales Cryogenics supplies compressor

Project status CDR ongoing

esa

Thales Cryogenics product LPTC compressor Developed under ESA-TRP

Technical information: Max input power

Mass

Cryocooler application

180 W 4.9 kg 50 K

Image: Air Liquide

LSF9199/30 - Modified COTS cooler Flexure-supported

Projects

Supplied through Sofradir Various non-US, non-EU customers

References:

"Development of cost-effective cryocoolers for space", ICC18, Syracuse, 2014

Context

Thales supplies cooler to Sofradir Sofradir integrates various IDCA detector types Various customers & applications

Project status

FMs delivered for first order Several follow-up orders

Thales Cryogenics product LSF9199/30

Based on COTS designs Flexure-bearing displacer

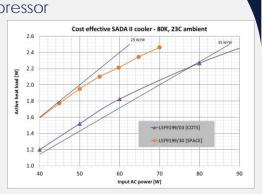
Upgraded materials Upgraded build standard

Option:

Balancer

Option:

Vibration control



Technical information:

Max input power
Application area
Flexure-supported displacer
Flexure-bearing compressor

IDCA-concept

Cold Finger: SADA II-compatible

90 W

50 - 200 K

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved.

LPT9510 testing at JPL (use of COTS cooler)

Projects

Various potential projects for JPL

References:

"Flight Qualification Testing of the Thales LPT9510 Pulse Tube Cooler", ICC18, Syracuse, 2014

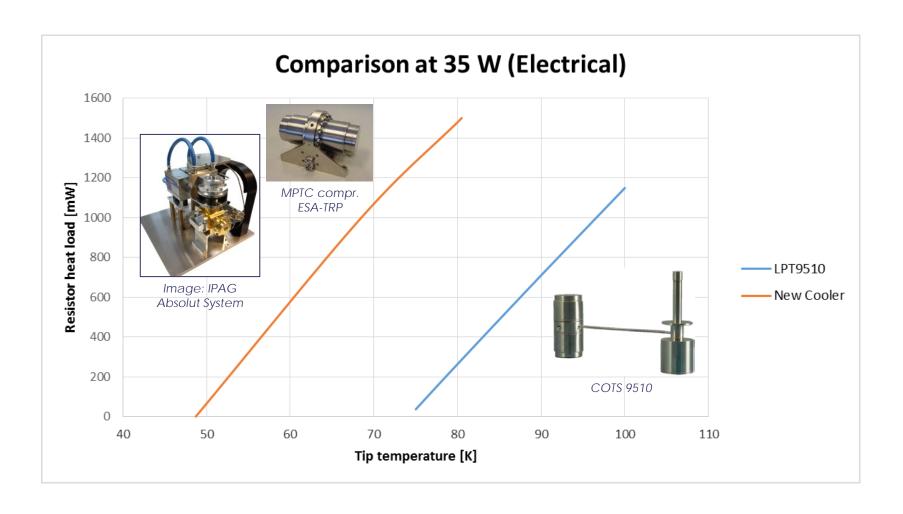
Context

Off-the-shelf cooler tested at JPI

Project status LPT9510 now considered TRL6 Proposed for several space and airborne missions

I PT9510 Off-the-shelf Pulse-tube cooler

Technical information:


Max input power 85 W Mass 2.1 kg Cryocooler application Heat lift 80 K 1.4 W

Tested to GEVS proto flight qualification levels at JPL

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved.

Impact of cost cooler / Space cooler

- Large commonality by design / function of compressor / cooler
 - Requirements for full space or "COTS" is changing
- Space has specific focus on requirements:
 - > Focus on availability
 - > Focus on efficiency
 - > Focus on mass / size
 - Focus on justification / verification [design / manufacturing].
- Space most challenging requirements:
 - Vibration levels / system impact
 - Robustness for environmental conditions
- Large spin-off to other industries is existing for cryocoolers

