

EUROPEAN SPALLATION SOURCE

The ESS Cryogenics System

J. G. Weisend II, P. Arnold, J Fydrych, W. Hees, J. Jurns, A. Lundmark, X. T. Su, X.L. Wang

June 2015

- Introduction to ESS
- Applications of Cryogenics at ESS
 - Accelerator Cryoplant
 - Cryogenic Distribution System
 - Target Moderator Cryoplant
 - Test and Instruments Cryoplant
- He Recovery and Storage
- Energy Recovery
- Summary

Introduction to ESS

The goal of ESS is to provide a spallation based neutron source significantly more powerful than existing sources: 30 - 100 times brighter than ILL and 5 times more powerful than SNS

This facility will enable neutron based research in a wide range of fields including: materials science, condensed matter and biomedical studies

ESS Overview

The view of the Southwest in 2025

• MAX IV – a national research facility, under construction, opens up in 2016

Malmö

 $(309\ 000)$

Lund (113 500

- Science City a new part of town
- ESS an international research facility

 $(1\ 200\ 000)$

← MAX IV

Applications of Cryogenics at ESS

- Cooling for the cryomodules (2 K, 4.5 300 K and 40 K)
- Cooling for the Target supercritical H₂ Moderator (16.5 K)
- Liquid Helium and Liquid Nitrogen for the Neutron Instruments
- Cooling for the cryomodule test stand (2 K, 4.5 300 K and 40 K)
- This is accomplished via 3 separate cryoplants

Accelerator Cryogenics

- Bulk of acceleration is carried out via 3 classes of SRF cavities: Spoke, Medium (β = 0.67) Beta Elliptical and High (β = 0.86) Beta Elliptical
- No superconducting magnets in the accelerator. There are some in the instruments
- Cavities operate at 2 K with a 40 50 K thermal shield
- Inner power coupler cooling from 4.2 K to 300 K
- Accelerator lattice permits an 14 additional cryomodules to compensate for lower than expected cryomodule gradients (Stage 2)

Elliptical Cavities & Cryomodule

Spoke cavity string and cryomodule package

ESS Accelerator Cryoplant (ACCP)

- Provides cryogenic cooling to Cryomodules
 - 13 Spoke and 30 Elliptical (Stage 1)
 - Sized to allow an additional 14 Elliptical Cryomodules for design contingency (Stage 2)
- Allows for number of operating modes
- Connected to the cryomodules via a cryogenic distribution system
- High availability and turn down capability are important features
- Compressor heat is absorbed by Lund District Heating System (unique ESS feature) June 2015 HFPTech - J.G. Weisend II

Accelerator Cryoplant (ACCP) Capacities

EUROPEAN SPALLATION SOURCE

Operation modes		2 K Load, W			4.5 K Load		40-50 K, W	
		Isothermal	Non- isothermal	Total	4.5 K, W Total	Liquefaction, g/s	Total	
Stage 1 2019- 2023	Nominal	1852	627	2478		6.8	8551	
	Turndown	845	627	1472		6.8	8551	
	Standby				1472	6.8	8551	
	TS Standby	(-)	5-6	-	-	-	8551	
	Maximal Liquefaction	Loads in standby mode plus maximum liquefaction rate at rising level into the storage tank						
Stage 2 2023	Nominal	2226	824	3050		9.0	11380	
	Turndown	1166	824	1990		9.0	11380	
	Standby	35	32	· ·	1990	9.0	11380	
	TS Standby	1001	Interio		653		11380	
	Maximal	Loads in	Loads in standby mode plus maximum liquefaction rate at rising level into the					
	Liquefaction		storage tank					

ACCP – Contract Award to Linde Kryotechnik AG in December 2014

EUROPEAN SPALLATION SOURCE

Cryogenic Distribution System

- Allows warm up and cool down of one or more cryomodules w/o affecting remaining cryomodules
- Connection between distribution line & cryomodule is done via fixed connections
- Separate isolation vacuums in the distribution lines and cryomodules
- Operating modes defined
- Conceptual design complete
- Provided as an In Kind Contribution by IPN Orsay (France) and WrUT (Poland)
- Cryogenic Distribution System must be complete and installed by December of 2017

Línac CDS - function and layouts

Cryogenic System of the Optimus Linac

Superconducting section of the Optimus Linac (303 m)

Valve box – vacuum jacket

CDS – In kind Agreements with IPNO and WrUT

June 2015

Target Moderator Cryoplant – Substantial Load Increase

Heat Load at 15 K increased from 20 kW to 35 kW due to moderator re-design (higher brightness, more neutrons)

Impact on space requirements, utilities, interference with other cryoplants and budget (minimal impact on schedule) – technical solutions are currently worked out

Tight collaboration with TU-Dresden, Hans Quack and FZ Jülich

Plant will likely be ordered in Q1 2016

Test & Instruments Cryoplant (TICP)

- Provides cooling for Cryomodule Test Stand
- During Science Operations, also provides LHe for sample environments and Science Instruments
- TICP provides for CM testing: 76 W at 2 K, 422 W at 40 K and 0.2 g/s of liquid helium
- Sub-atmospheric operation via warm vacuum pumps
- During Science Operations, the TICP shall provide more than 7500 liters of LHe per month
- A recovery system is being built to recover all He gas from instrument halls and return it for purification and liquefaction.
- We expect to order this plant in Q4 2015

Test & Instruments Cryoplant (TICP)

Helium Recovery and Storage

- The ESS goal is to recovery, purify and reuse as much He as possible
- ACCP and TICP cryoplants will share a common gas system while TMCP has separate storage that can be cross connected
- The system will include a separate cryogenic purifier
- Systems will be provided by IKC or separate contracts
- Expected He Storage Capacities:
 - LHe
 - 20 m³ (Includes storage for second fill of linac)
 - 5 m³ (Backup for Instruments He)
 - GHe (20 Bar)
 - 1000 m³ sufficient to hold all the linac inventory
 - GHe (200 Bar)
 - 12 m³ Instrument He storage

Plant arrangement in the Cold Box Building

Plant arrangement in the Compressor Building

Energy Recovery from ACCP Compressors

June 2015

ESS Cryogenic System

June 2015

HEPTech - J.G. Weisend II

WP11 Master Schedule

CHECKED BY J. WEISEND APPROVED BY M. LINDROOS

- Cryogenics will play a major role in ESS and affects the accelerator, target and instruments projects
- Work is well underway
 - A very skilled team has been assembled
 - Conceptual designs and technical specifications are complete or under preparation
 - Required buildings and utilities have been defined and are under detailed design
 - Accelerator Cryoplant order has been placed (Kick off meeting was held on May 8)
 - PDR for the WrUT portion of the CDS was held on May 2015
 - Additional cryoplant orders will be placed in late 2015 and early 2016