Cryogenic Detectors for HEP in Space and Related Requirements

Jan van der Kuur

Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research (NWO)

Why do we need cryogenic detectors at mK temperatures for space applications?

XMM X-ray observatory

- In orbit since december 1999
- CCD detectors
- Grating spectrometers
- Energy resolution limited at high energies (20eV @ 2.1keV)
- Astronomy requires $\Delta E < 3eV @ 6keV$

Far Infrared astronomy

- Far Infrared sensitivity limited by telescope emission
- Cold mirrors will reduce this telescope background
- Need for imaging sensors with high sensitivity
- SPICA: NEP ~ 2*10⁻¹⁹ W/√Hz
- Ground based, warm optics: NEP ~ 10^{-15} W/ \sqrt{Hz}

How much is 10⁻¹⁹ W?

1m² telescope @ earth...

...observing a biking light @ the moon...

... provides $\sim 10^{-19}$ W in its focus

How can 10⁻¹⁹ W be detected?

- Cryogenic bolometers can do the job
- 10^{-19} W \Leftrightarrow 2µK -> measurable
- Thermal isolation ~50 fW/K needed
- X-ray: $3eV = 5*10^{-19} J \rightarrow similar values$
- Note: Sun provides $\sim 10^{15}$ K

Equilibrium vs non-equilibrium detectors

Equilibrium (thermal) detectors

- Radiation heats isolated island
- Temperature change = signal
- ΔR: semiconductor

 superconductor (TES)
 ΔH: SQUID magnetometer
- Noise limit: statistics on number of phonons (shot noise)
- Operates @ ~ 100mK

Non-equilibrium detectors

- Radiation breaks pairs
- Broken pairs create signal:
 - ΔR: Semiconductor,/STJ
- $\Delta L: KID (inductance)$
- Noise limit: pair creation/ annihilation noise
- Not suitable for X-ray>6eV
- Operates @ ~150mK

Thermal detector operation in practice

- Water flow = heat flow = signal
- Water volume = temperature
- Volume is regulated by electro-thermal feedback
- Calorimeter: energy/photon
- Bolometer: power of many photons

38x38 bolometer array

9

X-ray pixel development

- Development of high-filling factor and high QE pixels array
- 250x250um sputtered Bi on electroplated Au
- TiAu TES with uniform current distribution
- Optimized for the MHz ac-read-out

X-ray pixel performance results

Energy resolution thermal X-ray detectors

Thermometer sensitivity TES

- Superconducting phase transition near Tc
- Strong dependence resistance temperature
- T_c tuned by proximity effect
- Normalized sensitivity (a=(dR/R)/(dT/T)):
 - > Si thermistor ~ a=1-5
 - ➤ TES ~ a=100

Energy resolution vs thermometer steepness (a)

=> Stability bath ~ stability island (0.3 μ K rms)

Electrical readout principle

- Voltage biased
- Trans-impedance (current) readout
- SQUIDs as low power amplifiers
- $P_{SQUID} \sim 1000*P_{pixel} =>$ multiplexing needed

TES as modulator

 AC voltage bias source produces carrier Thermal signal modulates amplitude of bias current

•LC bandpass filter to bandwidth-limit the signal

Multiplexed readout of TESes

- $\Rightarrow~$ Use available bandwidth (10MHz) in SQUIDs -> minimization of wires/ dissipation
- No signal loss allowed
- => Use Modulation: shift in frequency space by multiplication with carrier
- => thermal signals become independent
- > Voltage source as carrier generator
- > TES as amplitude modulator
- > LC bandpass filter to separate signals (Q $\sim 10^4$)
- SQUID in summing point

Modulation: separation in frequency space

Planar FDM demonstrator

- Light-tight box
- 72 channel LC filter
- Bolometer array
- Digital demodulation

Mux factor:

- 160 pix/channel for infrared
- 40 pixel/channel for Xray

160 resonators for one channel

- Efficient use of bandwidth
- Low power dissipation

SQUID amplifier: 50 – 100 nW/pixel@4K (KIDs) 1 muW/pixel @4K

TES detector Focal Plane Assembly (FPA)

FPA technology developments:

- Interconnects
- Detector mounting
- Kevlar thermal insulating suspension
- Magnetic shielding:
 - Niobium (superconducting)
 - Cryoperm 10

Summary

- Next generation space telescopes require very sensitive detectors
- Cryogenic detectors can provide the required performance
- Fundamental thermodynamic laws dictate the use of very low temperatures

Thank you

