
Git Introduction
Matthew Citron

1

M. Citron mc3909@ic.ac.uk

• No change is ever irreversible - can develop
without fear!

• Uses range from writing a latex report to
collaboration on the linux kernel

• Using remotes makes collaboration easy and
provides backup of entire history of project

• Simple and very fast to use (c.f. svn, cvs).

2

Why you should use git

M. Citron mc3909@ic.ac.uk

• The version of git on the lx0n machines is out of
date (git 1.5.5 from 2008….)

• Many nice (and simplifying) features added since

• Can source latest version by adding to .bashrc:  
 
export PATH = home/hep/mc3909/git:$PATH

• Or download at https://github.com/git/git

3

Git version at IC

https://github.com/git/git

M. Citron mc3909@ic.ac.uk

• Version Control

• Git Basics

• Branching and merging

• Remotes

• Rebasing

4

Outline

M. Citron mc3909@ic.ac.uk

Version Control

5

6M. Citron mc3909@ic.ac.uk

M. Citron mc3909@ic.ac.uk

• Version control allows any changes to be reverted

• Allows stable release(s) while developing

• Can provide backup and collaboration

• Three main types

- Local version control (RCS)

- Centralised version control (CVS, SVN)

- Distributed version control (git)

7

Version control

M. Citron mc3909@ic.ac.uk

Local version control
8

M. Citron mc3909@ic.ac.uk

Centralised version control
9

M. Citron mc3909@ic.ac.uk

Distributed version control
10

M. Citron mc3909@ic.ac.uk

Git Basics

11

M. Citron mc3909@ic.ac.uk

• The git repository contains the entire history of the
project

• A git repository can be local or remote

- Most operations local

• Every time you commit (save the state of the project)
git stores snapshot of repository (repo)

• Git operations generally add data - (almost)
everything is reversible

12

Git Basics

M. Citron mc3909@ic.ac.uk 13

Git repository snapshots

Note: This and all other figures not otherwise credited taken from http://git-scm.com/book/en/v2
(Pro-git manual by Scott Chacon and Ben Straub)

The pro-git manual is an excellent resource for learning about git (especially git workflows)

http://git-scm.com/book/en/v2

M. Citron mc3909@ic.ac.uk

• git init

- Makes a skeleton git repository

- Should be run in the top folder of your project

- Initially no files will be tracked (see later)

• git clone <url of git repo>

- Makes a copy of an existing git repository

- Will include entire history by default

• git grep <string>

- Search repository (very fast and can even search entire history) 

14

Basic git repo commands

M. Citron mc3909@ic.ac.uk

• Three main states tracked files can be in:
committed, modified or staged

• Committed - stored in git’s database

• Modified - files with changes not yet committed

• Staged - modified files marked to be committed

• Untracked files are those not included in the
previous snapshot

15

Git Workflow

M. Citron mc3909@ic.ac.uk 16

Three main areas of the repo

Where git stores the metadata and object database for the project

M. Citron mc3909@ic.ac.uk 17

One version of the project read from the .git directory (modifiable)

Three main areas of the repo

M. Citron mc3909@ic.ac.uk 18

Stores information of what will go into the next commit

Three main areas of the repo

M. Citron mc3909@ic.ac.uk

• git status

- To find the status of all the files in the repo (untracked, unmodified, modified or staged)

• git add <filename>

- Adds an untracked or modified file to the staging area

• git commit -m “<Message>”

- Takes a snapshot of all files in the staging area

• git log

- git commit history

- Many useful options (http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History) 

19

Basic git file commands

http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History

M. Citron mc3909@ic.ac.uk 20

Basic example

Run git init in project folder

Adds .git directory

Have folder containing project (just README file)

M. Citron mc3909@ic.ac.uk 21

Basic example
Run git status - one untracked file

Add to staging area with git add

M. Citron mc3909@ic.ac.uk 22

Basic example
Take snapshot of repo (git commit)

Editing file will change status to modified

File unmodified
after commit

M. Citron mc3909@ic.ac.uk 23

Basic example

Can directly commit changes (skip staging area) using flag -a

See commit history with git log

 SHA-1 checksum
to identify commit
(Can be used to
directly access

commit)

M. Citron mc3909@ic.ac.uk

• git commit --amend

- commit amends previous commit

- Don’t do this to pushed commits

• git reset HEAD <file>

- Unstages file

• git checkout -- [file]

- Undoes all changes since last commit

- Dangerous! All changes will be lost. 

24

Undoing things

M. Citron mc3909@ic.ac.uk 25

Summary

git add

git add

git commit

git rm (also deletes file)
git rm --cached (only unstages)
Commit early, commit often! - easy to see where/when things changed

M. Citron mc3909@ic.ac.uk

Branches and merging

26

M. Citron mc3909@ic.ac.uk

• Every commit stores a pointer to its snapshot as well as a pointer
to the commit that came before

• A branch is just a pointer to one of the commits

27

What is a branch?

M. Citron mc3909@ic.ac.uk 28

The branches (in red) are pointers to commits

What is a branch?

M. Citron mc3909@ic.ac.uk

HEAD is a special pointer to your current branch stored by git
29

What is a branch?

M. Citron mc3909@ic.ac.uk 30

Basic git branch commands
• git branch

- lists branches

• git branch <name>

- Makes a new branch (doesn’t change HEAD)

- Points to the commit you’re on

• git checkout <branch name>

- Change HEAD to <branch name>

• git checkout -b <branch name> [<branch/commit to base new branch on>]

- Equivalent to git branch <branch name> then git checkout <branch name>

• git branch -d <branch name>

- deletes <branch name> 

M. Citron mc3909@ic.ac.uk 31

Basic example of branches

Start with HEAD at master (note - this branch is not special
just default name)

M. Citron mc3909@ic.ac.uk 32

Basic example of branches

git branch testing - make testing branch

M. Citron mc3909@ic.ac.uk 33

Basic example of branches

git checkout testing - moves HEAD to testing

M. Citron mc3909@ic.ac.uk 34

Basic example of branches

Make commit - automatically moves HEAD branch to this
commit

M. Citron mc3909@ic.ac.uk 35

Basic example of branches

Can swap back to master (git checkout master) - changes
made in previous commit rewinded

M. Citron mc3909@ic.ac.uk 36

Basic example of branches

Commit again - branches have diverged (but it’s possible to
merge changes)

M. Citron mc3909@ic.ac.uk

• The advantages of using branches clearest here

• Can use different branches to make experimental
changes and merge when desired

• Necessary for collaborative projects (see later)

• git merge <branch name>

- Merges <branch name> into HEAD

37

Merging

M. Citron mc3909@ic.ac.uk 38

Merge example

Consider situation where you’re working on a development (iss53)

M. Citron mc3909@ic.ac.uk 39

Merge example

Find bug affecting master and decide to make hotfix branch to fix (from
master position)

M. Citron mc3909@ic.ac.uk 40

Merge example

Need to update master - checkout master and run git merge hotfix

M. Citron mc3909@ic.ac.uk 41

Merge example - command line

Note: Fast-forward - history is not divergent just need to add changes

M. Citron mc3909@ic.ac.uk 42

Merge example

Then go back to iss53 and complete development (new commit). Want to
add these changes to master but history has diverged.

M. Citron mc3909@ic.ac.uk 43

Merge example

Need to checkout master and run git merge iss53. This uses common
ancestor as well as current snapshots to merge branches.

M. Citron mc3909@ic.ac.uk 44

Merge example

Run git merge iss53 from master.  
Special merge commit (which master now points to) has two parents

See http://bit.ly/1tX5Grs for more complex example

M. Citron mc3909@ic.ac.uk 45

Merge example - command line

• Merge changes from iss53 to master (can choose merge strategy)

• Merge based on branch commits as well as common ancestor

• Git works out best common ancestor to use when merging

• May get merge conflict

M. Citron mc3909@ic.ac.uk 46

Merge conflict

If git cannot automatically merge branches there is a merge conflict

Git puts both versions in file and must fix manually

Once merge conflict fixed must commit again

Current branch
(the branch merging into)

Merge branch
(the branch merging from)

M. Citron mc3909@ic.ac.uk

• Branches are very cheap and useful tools in git

- Not unusual to make and delete several branches per day

• Can have long running branches (like master) which will
be used throughout project

• Also make topic branches to test ideas/developments
before merging into long running branches

• Can make separate developments off common branch
and merge

• Still only considered local git repo!

47

Summary

M. Citron mc3909@ic.ac.uk

Remote Repositories

48

M. Citron mc3909@ic.ac.uk

• Remote repositories allow collaboration on projects

• Can merge local changes with those made on the
remote (pushing and pulling)

• git clone adds remote as ‘origin’, however, this
remote is not special.

49

Remotes

M. Citron mc3909@ic.ac.uk

• git remote

- Lists remotes (-v verbose)

• git remote add <(any) name> <url>

- Adds new remote as <short name> (Make name useful!!!)

• git remote show <name>

- Inspect remote

• git remote rm <name>

- Remove remote

• git fetch <name>

- fetch remote branches

50

Basic commands for managing remotes

M. Citron mc3909@ic.ac.uk

• Git fetch gets remote branches in the form
(remote)/(branch)

• These are then local branches that cannot move
(i.e. constant pointer) unless updated by later git
fetch

• In other ways can be treated as normal branch -
i.e. can make normal branch based on remote as
well as merge changes from remote branch

51

Remote branches

M. Citron mc3909@ic.ac.uk 52

Remote branch example

On running git clone both origin/master and master point to same commit

M. Citron mc3909@ic.ac.uk 53

Remote branch example

Make changes locally and someone updates the remote - origin/master
stays at old position until call git fetch

M. Citron mc3909@ic.ac.uk 54

Remote branch example

git fetch updates origin/master - can now merge changes if desired

M. Citron mc3909@ic.ac.uk 55

Remote branch example

Can add multiple remotes as desired

M. Citron mc3909@ic.ac.uk 56

Remote branch example

git fetch teamone will then add their remote branch

M. Citron mc3909@ic.ac.uk

• git pull <remote repo> <remote branch>

- Merges changes from remote repo into current branch

- Equivalent to git fetch <remote name> then git merge <branch name>

- This can be confusing so may be better to avoid initially

• git push <remote repo> <local branch>:<remote branch>

- Merges local changes with server branch

- If branches have same name can use: git push <remote name> <local branch>

- If someone has already updated remote branch must merge their changes into local first

• git push <remote repo> --delete <remote branch>

- Delete remote branch

57

Basic commands for remote branches

M. Citron mc3909@ic.ac.uk

• Interacting with remotes simple extension of local working.

• Very common to have central project remote (e.g.
CMSSW) as well as personal fork of project remote.

• Give remote repo useful name!

• Never change the history of something that is public

• Many different workflows for collaborating with remotes

• Github is biggest host of remote repos

58

Summary and notes

M. Citron mc3909@ic.ac.uk

Rebasing

59

M. Citron mc3909@ic.ac.uk

• The rebase is an alternative to the merge which
provides a cleaner, more linear history

• The commit that results has exactly the same
content as it would from merge

• Controversial as resultant history is technically lies

• NEVER rebase commits which have already been
pushed to the remote

60

Rebasing

M. Citron mc3909@ic.ac.uk

• git rebase <branch name>

- First changes to the common ancestors of the two branches

- Finds the diffs made by the branch you’re on

- Resets the branch to the branch you’re rebasing onto

- Applies the diffs to that branch

• See http://bit.ly/1smHkM7 and http://githowto.com/
rebasing for more info

61

Basic command for rebasing

http://bit.ly/1smHkM7
http://githowto.com/rebasing

M. Citron mc3909@ic.ac.uk 62

Rebase example

Result from git merge experiment (HEAD at master)

Result from git rebase master (HEAD at experiment)
(can then fast-forward master with git merge)

M. Citron mc3909@ic.ac.uk

• Git is a very useful tool for working in isolation or within a collaboration.

• Can be unintuitive but most ‘errors’ come from

- Not resolving merge conflicts

- Trying to push without pulling (-f flag will get you killed)

- Forgetting to git add a file (especially when pushing) to remote

- Uncommitted changes before merging, changing branch etc…

• Anything that is committed can be changed without fear of loss.

• More info look here http://git-scm.com/book/en/v2

• If collaborating on a large project often a common git workflow is used
(see http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows)

• For those who use vim - fugitive is an amazing git plugin.

63

Summary

http://git-scm.com/book/en/v2
http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

January 2015 Ben Krikler 1

Git vs SVN

January 2015 Ben Krikler2

 Centralised Version Control
 One big remote repository
 Checkout a branch from this central repository
 Commit connects to remote and sends changes
 Improved on CVS, similar concepts

What is SVN?

Repository

Working Copy Working Copy

Update Commit Update Commit

January 2015 Ben Krikler3

Comparing Git to Svn

Repository

Pull Push Pull Push

Repository

Working Copy Working Copy

Update Commit Update Commit

Update Commit Update Commit

Repository Repository

Working CopyWorking Copy

SVN

GIT
 Distributed Version Control

 ''Clone'' complete copies of
the entire repository

 ''Commit'' stores local
snapshot of working index

 Push and pull to any other
''remote'' git repository

January 2015 Ben Krikler4

Checking out a Repo

Svn checkout:
 Makes a local copy of the tree in a repository and

matches each file to a remote one
 Can checkout a sub-directory of a repository
 Every directory has a `.svn/` directory

Git clone:
Makes a local copy of the repository and makes your

working index match the head of the master branch
 Can only check-out an entire repository (sort of)
 Top-level directory will contain a `.git/` directory

January 2015 Ben Krikler5

Commands are changed
SVN GIT

checkout repository clone repository

checkout sub-directory Not possible

commit commit + push

revert filename checkout filename

switch branch checkout branch

update pull

export Sparse clones but not so simple

add filename add filename

Log / status / diff / blame Log / status / diff / blame

January 2015 Ben Krikler6

Resetting the Working Copy
Having made some changes, we want to roll them back
In SVN:

 In Git, it depends whether we have changed:
 Working index:

 Staging area (after `git add`):

January 2015 Ben Krikler7

Merge Resolution
File conflicts:

 User A and B edit same file in the same place
 Svn and git need to manually merge files

 Working with the merge interactively:
 Svn gives you options immediately
 Git will return control to you immediately

 Use `git mergetool` which will give a more interactive
(even GUI, if configured) tool

January 2015 Ben Krikler8

Merge Resolution
File conflicts:

 Finishing merges

 Switch file versions:
 Abort merge:

January 2015 Ben Krikler9

Merge Resolution
Merging Gotchas

 --theirs is the incoming file
 --ours is the current file

 So when Merging, 'theirs' is the branch being merged in, 'ours' is
the branch being merged into.

 When rebasing, 'ours' is the commits being rebased onto
(typically the remote, the other branch), 'theirs' is the branch being
rebased (the branch being worked on).

 Use `git log --merge -p filename` to look at changes to a file
that contribute to a conflict
 `Git merge branch2` will merge branch2 into your current

branch

January 2015 Ben Krikler10

Merge Resolution

Tree Conflicts
User A renames or moves a

file (even to a sub-dir)

User B changes its content

 Git can resolve automatically

 Svn will flag as a conflict
 Need to solve manually

Original:
Directory1
 - File1
 - File2
Directory2

User A:
Directory1
 - File1
 - File2 (+)
Directory2

User B:
Directory1
 - File1
Directory2
 - File2

Merged Git
Directory1
 - File1
Directory2
 - File2 (+)

Merged Svn
Fails with message:
C File2
A Directory2/File2
Updated to revision 85.
Summary of conflicts:
 Tree conflicts: 1

January 2015 Ben Krikler11

Tagging a Release
Repository IDS

 SVN revision numbers: r1401
 Git commit hashes ff9e41983dd160cdc20d048a4153fa49c37a1b8f

 Specific tags emphasize a release:
In SVN: Copy the trunk into the tags directory

In Git: Use `git tag`

January 2015 Ben Krikler 12

Git Spice:
Some additional
techniques

January 2015 Ben Krikler13

Git Config
Git config controls setup

--system – All users (/etc/gitconfig)
--global – All your repositories (~/.gitconfig)
--local – Just the current repository (aProject/.git/config)

Email and username

Colour
 Switches on colour in diffs, logs, status etc
 Enabled by default in recent Git versions

 More at: http://www.git-scm.com/book/en/v2/Customizing-Git-
Git-Configuration

January 2015 Ben Krikler14

Git Alias
 Work like bash aliases

 Make an 'unstage' command

 Different log output:

January 2015 Ben Krikler15

Ingoring files
Why and when to use:

Ignore a set of files or a directory
Eg. Emacs back-up files shouldn't be committed

 How to use:
 Write a .gitignore file in the directory containing files to be ignored
 In the file:

 Comment lines start with `#`
 Wildcard with `*`
 Character sets such as [abc], [a-z]
 Extended globbing (like bash) so `**` matches across

directories
 Negate a match by prefixing `!`

 Many standard .gitignore files can be found at:
https://github.com/github/gitignore

https://github.com/github/gitignore

January 2015 Ben Krikler16

Ingoring files
Example .gitignore: c++.gitignore

from https://github.com/github/gitignore

https://github.com/github/gitignore

January 2015 Ben Krikler17

Sparse Repository
Why and when to use:

 Want a sub-directory of a git repo
 How to use:

 Follow guide here:
 briancoyner.github.io/blog/2013/06/05/git-sparse-checkout/

https://briancoyner.github.io/blog/2013/06/05/git-sparse-checkout/

January 2015 Ben Krikler18

Git commit --amend
Why and When:

 Wish to change the commit message on the previous
commit

How:

 Set the EDITOR environment variable in the shell for the
last command to open the commit message in your
preffered editor (eg. Vim)

 Warning: Don't amend commits that have been pushed!!

January 2015 Ben Krikler19

Git blame
Why and When:

 Find out last person to touch each line of code

How:
 `-MC` Shows the original file if the line is from another

file that changed in the same commit
Output:

January 2015 Ben Krikler20

Git Stash
 Why and when to use:

 To quickly strip away changes to a working index
 When you wish to switch a branch but aren't ready to commit some

local change
 Has separate sub-commands:

 Git stash [save] – Stash away local changes
 Git stash apply – Apply the latest stash to the working index
 Git stash pop – Apply then remove the latest stash
 Git stash list – List all available stashes and their hashes
 Git stash drop – Remove a stash from the list
 Git stash show – Show what changes the stash represents
 Git stash branch – Turn the stash into a new branch

 Links:
 http://www.git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning

January 2015 Ben Krikler21

Git Stash
 Make some local changes:

Stash the changes:

Inspect the new stash:

January 2015 Ben Krikler22

Git Stash
List available stashes

Pop the last stash

Delete the remaining stash

January 2015 Ben Krikler23

Git Bisect
 Why and when to use:

 Identify the commit where a bug or change was introduced

 What:
 Performs a binary search through commits until you identify the change

 How:
 Identify the range of commits to inspect
 Setup git bisect
 Git takes you to the mid-point of your range
 Inspect this commit (compile, run, debug etc)
 Tell git bisect if this commit is good or bad
 Repeat the last three points until you find the culprit commit

 Links:
 https://www.kernel.org/pub/software/scm/git/docs/git-bisect.html

January 2015 Ben Krikler24

Git Bisect
Find the range to inspect (git log)
Setup:

 Test this commit
 Tell git the result:

 Also:
 git bisect reset: Return to the original state
 git bisect skip: Test a different commit nearby
 git bisect run my_script arguments: Automate everything

January 2015 Ben Krikler25

Git Cherry-pick
 Why and when to use:

 Apply commits from another branch selectively
 Contrast to merge / rebase

 How:
 Find commits of interest
 Change to receiving branch
 Run: git cherry-pick commit_hash

January 2015 Ben Krikler 28

Git Workflows

January 2015 Ben Krikler29

Work Flows

Git allows for:
 Multiple remote repositories
 Easy branching / merging (on the whole)

 Rebase vs Merge
 Schemas:

 Centralised
 Integration Manager (Esp. GitHub, CMS)
 Dictator vs Lieutenant

 Git-flow

January 2015 Ben Krikler30

Rebase Vs Merge

 Some groups state rebasing as preferred
 Rebasing 'linearises' the history

 Can become easier to read
 Avoid rebasing if the branch is public
 If the branch history is important

C0 C1 C4'C2 C3 C5'

C0 C1

C4

C2 C3

C5

C6

Merged

Rebased
C0 C1

C4

C2 C3

C5
Original

January 2015 Ben Krikler31

Collaboration Schemes

 Everyone push and pull freely
 Single central remote
 Better for smaller groups
 Essentially the SVN model

Im
ag

es
 fr

om
 c

bx
33

.g
ith

ub
.io

/g
itt

/c
ha

p1
-2

.h
tm

l

Centralised
Organisation

January 2015 Ben Krikler32

Collaboration Schemes

 Each developer has a private
(local) and public (eg.
GitHub) repository
 Integration pulls on request
from public repos
 Developers rebase on
blessed repo
 Quite common

 CMS use this approach

Im
ag

es
 fr

om
 c

bx
33

.g
ith

ub
.io

/g
itt

/c
ha

p1
-2

.h
tm

l

Integration Manager

January 2015 Ben Krikler33

Collaboration Schemes

 Delegation of merging
 Less common
 Used in very big projects

 Eg. Linux Kernel

Im
ag

es
 fr

om
 c

bx
33

.g
ith

ub
.io

/g
itt

/c
ha

p1
-2

.h
tm

l

Dictator vs Lieutenant

January 2015 Ben Krikler34

Git flow
 Prescription for branching
 Can be used for
collaboration

 Normally with
centralised setup

 Git add-on to help manage
branching:

github.com/nvie/gitflow

Im
ag

e
fr

om
 n

vi
e.

co
m

/p
os

ts
/a

-s
uc

ce
ss

fu
l-

gi
t-

br
an

ch
in

g-
m

od
el

/

January 2015 Ben Krikler 35

January 2015 Ben Krikler36

Summary

 Git is very powerful
 Git has many tools and approaches
 Git is very different to CVS and SVN
 Git
 Git
 Giiiit
 They're Giiiiiiiiiiit (read as Tony the Tiger)
 Git off my land

https://github.com/nvie/gitflow

January 2015 Ben Krikler37

Links

 Kick-ass interactive cheat-sheet:
ndpsoftware.com/git-cheatsheet.html

 Nice guidelines and tutorial:
cbx33.github.io/gitt/intro.html

 Github + CodeSchool's 15 min git walkthrough
try.github.io/levels/1/challenges/1

 Working with Github
guides.github.com/

