
January 2015 Ben Krikler 1

Git vs SVN

January 2015 Ben Krikler2

 Centralised Version Control
 One big remote repository
 Checkout a branch from this central repository
 Commit connects to remote and sends changes
 Improved on CVS, similar concepts

What is SVN?

Repository

Working Copy Working Copy

Update Commit Update Commit

January 2015 Ben Krikler3

Comparing Git to Svn

Repository

Pull Push Pull Push

Repository

Working Copy Working Copy

Update Commit Update Commit

Update Commit Update Commit

Repository Repository

Working CopyWorking Copy

SVN

GIT
 Distributed Version Control

 ''Clone'' complete copies of
the entire repository

 ''Commit'' stores local
snapshot of working index

 Push and pull to any other
''remote'' git repository

January 2015 Ben Krikler4

Checking out a Repo

Svn checkout:
 Makes a local copy of the tree in a repository and

matches each file to a remote one
 Can checkout a sub-directory of a repository
 Every directory has a `.svn/` directory

Git clone:
Makes a local copy of the repository and makes your

working index match the head of the master branch
 Can only check-out an entire repository (sort of)
 Top-level directory will contain a `.git/` directory

January 2015 Ben Krikler5

Commands are changed
SVN GIT

checkout repository clone repository

checkout sub-directory Not possible

commit commit + push

revert filename checkout filename

switch branch checkout branch

update pull

export Sparse clones but not so simple

add filename add filename

Log / status / diff / blame Log / status / diff / blame

January 2015 Ben Krikler6

Resetting the Working Copy
Having made some changes, we want to roll them back
In SVN:

 In Git, it depends whether we have changed:
 Working index:

 Staging area (after `git add`):

January 2015 Ben Krikler7

Merge Resolution
File conflicts:

 User A and B edit same file in the same place
 Svn and git need to manually merge files

 Working with the merge interactively:
 Svn gives you options immediately
 Git will return control to you immediately

 Use `git mergetool` which will give a more interactive
(even GUI, if configured) tool

January 2015 Ben Krikler8

Merge Resolution
File conflicts:

 Finishing merges

 Switch file versions:
 Abort merge:

January 2015 Ben Krikler9

Merge Resolution
Merging Gotchas

 --theirs is the incoming file
 --ours is the current file

 So when Merging, 'theirs' is the branch being merged in, 'ours' is
the branch being merged into.

 When rebasing, 'ours' is the commits being rebased onto
(typically the remote, the other branch), 'theirs' is the branch being
rebased (the branch being worked on).

 Use `git log --merge -p filename` to look at changes to a file
that contribute to a conflict
 `Git merge branch2` will merge branch2 into your current

branch

January 2015 Ben Krikler10

Merge Resolution

Tree Conflicts
User A renames or moves a

file (even to a sub-dir)

User B changes its content

 Git can resolve automatically

 Svn will flag as a conflict
 Need to solve manually

Original:
Directory1
 - File1
 - File2
Directory2

User A:
Directory1
 - File1
 - File2 (+)
Directory2

User B:
Directory1
 - File1
Directory2
 - File2

Merged Git
Directory1
 - File1
Directory2
 - File2 (+)

Merged Svn
Fails with message:
C File2
A Directory2/File2
Updated to revision 85.
Summary of conflicts:
 Tree conflicts: 1

January 2015 Ben Krikler11

Tagging a Release
Repository IDS

 SVN revision numbers: r1401
 Git commit hashes ff9e41983dd160cdc20d048a4153fa49c37a1b8f

 Specific tags emphasize a release:
In SVN: Copy the trunk into the tags directory

In Git: Use `git tag`

January 2015 Ben Krikler 12

Git Spice:
Some additional
techniques

January 2015 Ben Krikler13

Git Config
Git config controls setup

--system – All users (/etc/gitconfig)
--global – All your repositories (~/.gitconfig)
--local – Just the current repository (aProject/.git/config)

Email and username

Colour
 Switches on colour in diffs, logs, status etc
 Enabled by default in recent Git versions

 More at: http://www.git-scm.com/book/en/v2/Customizing-Git-
Git-Configuration

January 2015 Ben Krikler14

Git Alias
 Work like bash aliases

 Make an 'unstage' command

 Different log output:

January 2015 Ben Krikler15

Ingoring files
Why and when to use:

Ignore a set of files or a directory
Eg. Emacs back-up files shouldn't be committed

 How to use:
 Write a .gitignore file in the directory containing files to be ignored
 In the file:

 Comment lines start with `#`
 Wildcard with `*`
 Character sets such as [abc], [a-z]
 Extended globbing (like bash) so `**` matches across

directories
 Negate a match by prefixing `!`

 Many standard .gitignore files can be found at:
https://github.com/github/gitignore

https://github.com/github/gitignore

January 2015 Ben Krikler16

Ingoring files
Example .gitignore: c++.gitignore

from https://github.com/github/gitignore

https://github.com/github/gitignore

January 2015 Ben Krikler17

Sparse Repository
Why and when to use:

 Want a sub-directory of a git repo
 How to use:

 Follow guide here:
 briancoyner.github.io/blog/2013/06/05/git-sparse-checkout/

https://briancoyner.github.io/blog/2013/06/05/git-sparse-checkout/

January 2015 Ben Krikler18

Git commit --amend
Why and When:

 Wish to change the commit message on the previous
commit

How:

 Set the EDITOR environment variable in the shell for the
last command to open the commit message in your
preffered editor (eg. Vim)

 Warning: Don't amend commits that have been pushed!!

January 2015 Ben Krikler19

Git blame
Why and When:

 Find out last person to touch each line of code

How:
 `-MC` Shows the original file if the line is from another

file that changed in the same commit
Output:

January 2015 Ben Krikler20

Git Stash
 Why and when to use:

 To quickly strip away changes to a working index
 When you wish to switch a branch but aren't ready to commit some

local change
 Has separate sub-commands:

 Git stash [save] – Stash away local changes
 Git stash apply – Apply the latest stash to the working index
 Git stash pop – Apply then remove the latest stash
 Git stash list – List all available stashes and their hashes
 Git stash drop – Remove a stash from the list
 Git stash show – Show what changes the stash represents
 Git stash branch – Turn the stash into a new branch

 Links:
 http://www.git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning

January 2015 Ben Krikler21

Git Stash
 Make some local changes:

Stash the changes:

Inspect the new stash:

January 2015 Ben Krikler22

Git Stash
List available stashes

Pop the last stash

Delete the remaining stash

January 2015 Ben Krikler23

Git Bisect
 Why and when to use:

 Identify the commit where a bug or change was introduced

 What:
 Performs a binary search through commits until you identify the change

 How:
 Identify the range of commits to inspect
 Setup git bisect
 Git takes you to the mid-point of your range
 Inspect this commit (compile, run, debug etc)
 Tell git bisect if this commit is good or bad
 Repeat the last three points until you find the culprit commit

 Links:
 https://www.kernel.org/pub/software/scm/git/docs/git-bisect.html

January 2015 Ben Krikler24

Git Bisect
Find the range to inspect (git log)
Setup:

 Test this commit
 Tell git the result:

 Also:
 git bisect reset: Return to the original state
 git bisect skip: Test a different commit nearby
 git bisect run my_script arguments: Automate everything

January 2015 Ben Krikler25

Git Cherry-pick
 Why and when to use:

 Apply commits from another branch selectively
 Contrast to merge / rebase

 How:
 Find commits of interest
 Change to receiving branch
 Run: git cherry-pick commit_hash

January 2015 Ben Krikler 28

Git Workflows

January 2015 Ben Krikler29

Work Flows

Git allows for:
 Multiple remote repositories
 Easy branching / merging (on the whole)

 Rebase vs Merge
 Schemas:

 Centralised
 Integration Manager (Esp. GitHub, CMS)
 Dictator vs Lieutenant

 Git-flow

January 2015 Ben Krikler30

Rebase Vs Merge

 Some groups state rebasing as preferred
 Rebasing 'linearises' the history

 Can become easier to read
 Avoid rebasing if the branch is public
 If the branch history is important

C0 C1 C4'C2 C3 C5'

C0 C1

C4

C2 C3

C5

C6

Merged

Rebased
C0 C1

C4

C2 C3

C5
Original

January 2015 Ben Krikler31

Collaboration Schemes

 Everyone push and pull freely
 Single central remote
 Better for smaller groups
 Essentially the SVN model

Im
ag

es
 fr

om
 c

bx
33

.g
ith

ub
.io

/g
itt

/c
ha

p1
-2

.h
tm

l

Centralised
Organisation

January 2015 Ben Krikler32

Collaboration Schemes

 Each developer has a private
(local) and public (eg.
GitHub) repository
 Integration pulls on request
from public repos
 Developers rebase on
blessed repo
 Quite common

 CMS use this approach

Im
ag

es
 fr

om
 c

bx
33

.g
ith

ub
.io

/g
itt

/c
ha

p1
-2

.h
tm

l

Integration Manager

January 2015 Ben Krikler33

Collaboration Schemes

 Delegation of merging
 Less common
 Used in very big projects

 Eg. Linux Kernel

Im
ag

es
 fr

om
 c

bx
33

.g
ith

ub
.io

/g
itt

/c
ha

p1
-2

.h
tm

l

Dictator vs Lieutenant

January 2015 Ben Krikler34

Git flow
 Prescription for branching
 Can be used for
collaboration

 Normally with
centralised setup

 Git add-on to help manage
branching:

github.com/nvie/gitflow

Im
ag

e
fr

om
 n

vi
e.

co
m

/p
os

ts
/a

-s
uc

ce
ss

fu
l-

gi
t-

br
an

ch
in

g-
m

od
el

/

January 2015 Ben Krikler 35

January 2015 Ben Krikler36

Summary

 Git is very powerful
 Git has many tools and approaches
 Git is very different to CVS and SVN
 Git
 Git
 Giiiit
 They're Giiiiiiiiiiit (read as Tony the Tiger)
 Git off my land

https://github.com/nvie/gitflow

January 2015 Ben Krikler37

Links

 Kick-ass interactive cheat-sheet:
ndpsoftware.com/git-cheatsheet.html

 Nice guidelines and tutorial:
cbx33.github.io/gitt/intro.html

 Github + CodeSchool's 15 min git walkthrough
try.github.io/levels/1/challenges/1

 Working with Github
guides.github.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

