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Git vs SVN



January 2015 Ben Krikler2

 Centralised Version Control
 One big remote repository
 Checkout a branch from this central repository
 Commit connects to remote and sends changes
 Improved on CVS, similar concepts

What is SVN?

Repository

Working Copy Working Copy

Update Commit Update Commit
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Comparing Git to Svn

Repository

Pull Push Pull Push

Repository

Working Copy Working Copy

Update Commit Update Commit

Update Commit Update Commit

Repository Repository

Working CopyWorking Copy

SVN

GIT
 Distributed Version Control

 ''Clone'' complete copies of 
the entire repository

 ''Commit'' stores local 
snapshot of working index

 Push and pull to any other 
''remote'' git repository
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Checking out a Repo

Svn checkout:
 Makes a local copy of the tree in a repository and 

matches each file to a remote one
 Can checkout a sub-directory of a repository
 Every directory has a `.svn/` directory

Git clone:
Makes a local copy of the repository and makes your 

working index match the head of the master branch
 Can only check-out an entire repository (sort of)
 Top-level directory will contain a `.git/` directory
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Commands are changed
SVN GIT

checkout repository clone repository

checkout sub-directory Not possible

commit commit + push

revert filename checkout filename

switch branch checkout branch

update pull

export Sparse clones but not so simple

add filename add filename

Log / status / diff / blame Log / status / diff / blame
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Resetting the Working Copy
Having made some changes, we want to roll them back
In SVN:

 In Git, it depends whether we have changed:
 Working index:

 Staging area (after `git add`):
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Merge Resolution
File conflicts:

 User A and B edit same file in the same place
 Svn and git need to manually merge files

 Working with the merge interactively:
 Svn gives you options immediately
 Git will return control to you immediately

 Use `git mergetool` which will give a more interactive 
(even GUI, if configured) tool
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Merge Resolution
File conflicts:

 Finishing merges

 Switch file versions:
 Abort merge: 
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Merge Resolution
Merging Gotchas

 --theirs is the incoming file
 --ours is the current file

 So when Merging, 'theirs' is the branch being merged in, 'ours' is 
the branch being merged into.

 When rebasing, 'ours' is the commits being rebased onto 
(typically the remote, the other branch), 'theirs' is the branch being 
rebased (the branch being worked on).

 Use `git log --merge -p filename` to look at changes to a file 
that contribute to a conflict
 `Git merge branch2` will merge branch2 into your current 

branch 
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Merge Resolution

Tree Conflicts
User A renames or moves a 

file (even to a sub-dir)

User B changes its content

 Git can resolve automatically

 Svn will flag as a conflict
 Need to solve manually

Original:
Directory1
 - File1
 - File2
Directory2

User A:
Directory1
 - File1
 - File2 (+)
Directory2

User B:
Directory1
 - File1
Directory2
 - File2

Merged Git
Directory1
 - File1
Directory2
 - File2 (+)

Merged Svn
Fails with message:
C File2
A    Directory2/File2
Updated to revision 85.
Summary of conflicts:
  Tree conflicts: 1
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Tagging a Release
Repository IDS

 SVN revision numbers: r1401
 Git commit hashes ff9e41983dd160cdc20d048a4153fa49c37a1b8f

 Specific tags emphasize a release:
In SVN: Copy the trunk into the tags directory

In Git: Use `git tag`
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Git Spice:
Some additional 
techniques
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Git Config
Git config controls setup

--system – All users ( /etc/gitconfig )
--global – All your repositories ( ~/.gitconfig )
--local – Just the current repository ( aProject/.git/config )

Email and username
 

Colour
 Switches on colour in diffs, logs, status etc
 Enabled by default in recent Git versions

 More at: http://www.git-scm.com/book/en/v2/Customizing-Git-
Git-Configuration
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Git Alias
 Work like bash aliases

 Make an 'unstage' command

 Different log output:
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Ingoring files
Why and when to use:

Ignore a set of files or a directory
Eg. Emacs back-up files shouldn't be committed

 How to use:
 Write a .gitignore file in the directory containing files to be ignored
 In the file: 

 Comment lines start with `#`
 Wildcard with `*`
 Character sets such as [abc], [a-z]
 Extended globbing (like bash) so `**` matches across 

directories
 Negate a match by prefixing `!`

 Many standard .gitignore files can be found at:
https://github.com/github/gitignore

https://github.com/github/gitignore
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Ingoring files
Example .gitignore: c++.gitignore 

from https://github.com/github/gitignore

https://github.com/github/gitignore
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Sparse Repository
Why and when to use:

 Want a sub-directory of a git repo
 How to use:

 Follow guide here:
 briancoyner.github.io/blog/2013/06/05/git-sparse-checkout/

https://briancoyner.github.io/blog/2013/06/05/git-sparse-checkout/
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Git commit --amend
Why and When:  

 Wish to change the commit message on the previous 
commit

How:

 Set the EDITOR environment variable in the shell for the 
last command to open the commit message in your 
preffered editor (eg. Vim)

 Warning: Don't amend commits that have been pushed!!
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Git blame
Why and When:  

 Find out last person to touch each line of code

How:
 `-MC` Shows the original file if the line is from another 

file that changed in the same commit
Output:
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Git Stash
 Why and when to use:

 To quickly strip away changes to a working index
 When you wish to switch a branch but aren't ready to commit some 

local change
 Has separate sub-commands:

 Git stash [save] – Stash away local changes
 Git stash apply – Apply the latest stash to the working index
 Git stash pop – Apply then remove the latest stash
 Git stash list – List all available stashes and their hashes
 Git stash drop – Remove a stash from the list
 Git stash show – Show what changes the stash represents
 Git stash branch – Turn the stash into a new branch

 Links:
 http://www.git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning
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Git Stash
 Make some local changes:

Stash the changes:

Inspect the new stash:
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Git Stash
List available stashes

Pop the last stash

Delete the remaining stash
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Git Bisect
 Why and when to use:

 Identify the commit where a bug or change was introduced 

 What: 
 Performs a binary search through commits until you identify the change

 How:
 Identify the range of commits to inspect
 Setup git bisect
 Git takes you to the mid-point of your range
 Inspect this commit (compile, run, debug etc)
 Tell git bisect if this commit is good or bad
 Repeat the last three points until you find the culprit commit

 Links:
 https://www.kernel.org/pub/software/scm/git/docs/git-bisect.html
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Git Bisect
Find the range to inspect (git log)
Setup:

 Test this commit
 Tell git the result:

 Also:
 git bisect reset:  Return to the original state
 git bisect skip:  Test a different commit nearby
 git bisect run my_script arguments:  Automate everything
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Git Cherry-pick
 Why and when to use:

 Apply commits from another branch selectively
 Contrast to merge / rebase 

 How:
 Find commits of interest
 Change to receiving branch
 Run: git cherry-pick commit_hash
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Git Workflows
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Work Flows

Git allows for:
 Multiple remote repositories
 Easy branching / merging (on the whole)

 Rebase vs Merge
 Schemas:

 Centralised
 Integration Manager (Esp. GitHub, CMS)
 Dictator vs Lieutenant

 Git-flow
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Rebase Vs Merge

 Some groups state rebasing as preferred
 Rebasing 'linearises' the history

 Can become easier to read
 Avoid rebasing if the branch is public
 If the branch history is important

C0 C1 C4'C2 C3 C5'

C0 C1

C4

C2 C3

C5

C6

Merged

Rebased
C0 C1

C4

C2 C3

C5
Original
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Collaboration Schemes

 Everyone push and pull freely
 Single central remote
 Better for smaller groups
 Essentially the SVN model
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Collaboration Schemes

 Each developer has a private 
(local) and public (eg. 
GitHub) repository
 Integration pulls on request 
from public repos
 Developers rebase on 
blessed repo
 Quite common

 CMS use this approach
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Collaboration Schemes

 Delegation of merging
 Less common
 Used in very big projects

 Eg. Linux Kernel
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Git flow
 Prescription for branching
 Can be used for 
collaboration

 Normally with 
centralised setup

 Git add-on to help manage 
branching:

github.com/nvie/gitflow
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Summary

 Git is very powerful
 Git has many tools and approaches
 Git is very different to CVS and SVN
 Git
 Git
 Giiiit
 They're Giiiiiiiiiiit (read as Tony the Tiger)
 Git off my land

https://github.com/nvie/gitflow
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Links

 Kick-ass interactive cheat-sheet:
ndpsoftware.com/git-cheatsheet.html

 Nice guidelines and tutorial:
cbx33.github.io/gitt/intro.html

 Github + CodeSchool's 15 min git walkthrough
try.github.io/levels/1/challenges/1

 Working with Github
guides.github.com/
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