Explored and Unexplored MSSM Signatures

Sam Bein, Florida State University

make robust, comprehensive statements about SUSY guide the next generation of measurements parameter estimation in case of discovery

CMS PAS SUS-13-020 Phenomenological MSSM interpretation of the CMS 7 and 8 TeV results

Gals

The Challenge

R-parity conserving MSSM

Hypotheses the LHC can test

The Challenge

R-parity conserving MSSM

pMSSM

Hypotheses the LHC can test

The Phenomenological (p)MSSM

R-parity conserving MSSM 119 parameters

pMSSM 19 parameters

Hypotheses the LHC can test

A realization of the R-parity conserving MSSM with *no new sources of CP violation *no flavor changing neutral currents *1st and 2nd generation squarks are degenerate *lightest SUSY particle is the neutralino

The Phenomenological (p)MSSM

The Phenomenological (p)MSSM A realization of the R-parity conserving MSSM with *no new sources of CP violation *no flavor changing neutral currents *1st and 2nd generation squarks are degenerate *lightest SUSY particle is the neutralino

19 Parameters

Gaugino mass parameters M_1 , M_2 , and M_3 Higgs sector parameters $tan(\beta)$, μ , and m_A 10 sfermion mass parameters m_i Trilinear couplings A_t , A_b , and A_{τ}

Strategy

- incorporate relevant prior information (10 previous results)
- scan parameter space with (7200 points)
- draw conclusions in a probabilistic framework

Parameter Ranges $-3 \text{ TeV} \leq M_1, M_2 \leq 3 \text{ TeV}$ $0 \leq M_3 \leq 3 \text{ TeV}$ $-3 \,\mathrm{TeV} \le \mu \le 3 \,\mathrm{TeV}$ $0 \leq m_A \leq 3 \,\text{TeV}$ $2 \leq \tan \beta \leq 60$ $0 \leq \tilde{Q}_{1,2}, \tilde{U}_{1,2}, \tilde{D}_{1,2}, \tilde{L}_{1,2}, \tilde{E}_{1,2}, \tilde{Q}_3, \tilde{U}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3 \leq 3 \text{ TeV}$ $-7 \text{ TeV} \leq A_t, A_b, A_\tau \leq 7 \text{ TeV},$

Determinants of the Prior

i	Observable	Constraint	Likelihood function		
	$\mu_j(\theta)$	$D_j^{ m preCMS}$	$L(D_j^{ ext{preCMS}} \mu_j(heta))$		
1	$BR(b ightarrow s\gamma)$	$(3.55 \pm 0.23^{ m stat} \pm 0.24^{ m th} \pm 0.09^{ m sys}) imes 10^{-4}$	Gaussian		
2a	$BR(B_s \to \mu\mu)$	observed CLs curve from	d(1-CLs)/dx		
2b	$BR(B_s \to \mu\mu)$	$3.2^{+1.5}_{-1.2} imes 10^{-9}$	2-sided Gaussian		
3	$R(B_u \to \tau \nu)$	1.63 ± 0.54	Gaussian		
4	Δa_{μ}	$(26.1 \pm 8.0^{ m exp} \pm 10.0^{ m th}) imes 10^{-10}$	Gaussian		
5	m_t	$173.3\pm0.5^{\mathrm{stat}}\pm1.3^{\mathrm{sys}}$ GeV	Gaussian		
6	$m_b(m_b)$	$4.19^{+0.18}_{-0.06} \text{ GeV}$	Two-sided Gaussian		
7	$\alpha_s(M_Z)$	0.1184 ± 0.0007	Gaussian		
8a	m_h	pre-LHC: $m_h^{low} = 112$	1 if $m_h \ge m_h^{low}$		
			0 if $m_h < m_h^{low}$		
8b	m_h	LHC: $m_h^{low} = 120, \ m_h^{up} = 130$	1 if $m_h^{low} \le m_h \le m_h^{up}$		
			0 if $m_h < m_h^{low}$ or $m_h > m_h^{up}$		
9	sparticle	LEP	1 if allowed		
	masses	via micrOMEGAs	0 if excluded		
10	prompt $\tilde{\chi}_1^{\pm}$	$c au(ilde{\chi}_1^{\pm}) < 10 \ \mathrm{mm}$	1 if allowed		
			0 if excluded		
¹⁰ <u>Samuel Bein, CMS (Florida State University</u>					

CMS SUSY Analyses

Analysis

Hadronic HT + MHT search Hadronic HT + MET + b-jets Leptonic search for EW proc Hadronic HT + MHT search Hadronic M_{T2} search Hadronic HT + MET + b-jets Monojet searches Hadronic stop search Opposite sign di-lepton (OS (count experiment only) Like-sign di-leptoin (LS ll) s (only channels w/o 3rd lept Leptonic search for EW proc (only ss, 3l, and 4l channels)

	\sqrt{s} [TeV]	L [fb ⁻¹]
1 I	7	4.98
s search	7	4.98
d. of $\widetilde{\chi}^0$, $\widetilde{\chi}^{\pm}$, \widetilde{l}	7	4.98
1 I	8	19.5
	8	19.5
s search	8	19.4
	8	19.7
	8	19.4
5 ll) search	8	19.4
search	8	19.5
ton veto)		
d. of $\widetilde{\chi}^0, \widetilde{\chi}^{\pm}, \widetilde{l}$	8	19.5
)		

Posterior Density

 Expected signal counts estimated by simulation for each signal region

 $p(\theta|Data^{CMS}) \propto L(Data^{CMS}|\theta)\Pi(\theta)$

Results

Gluino

CMS (Florida State University)

probability density / GeV

posterior prior

χ₁ mass [GeV]

Convenient re-mapping of the Bayes factor: **Bayes factor:** $B_{10} = L(Data|H_1)/L(Data|H_0)$ **Z-signficiance**: $Z = sign(log(B_{10}))\sqrt{2}|log(B_{10})|$

Z <= -1.64 (excluded)

Non-excluded parameter space

Z > -1.64 (non-excluded)

Out of 7195 studied pMSSM points: searches

over 50% of the nonexcluded points have a total production cross section greater than 10 fb.

Non-excluded parameter space

3,516 points have been excluded by direct CMS SUSY

Dominant pair production mode

- High Cross section
- Non-excluded

Mode	no. points
$ ilde{\chi}_1^+$	917
\widetilde{d}	573
$ ilde{u}$	228
${ ilde b}_1$	96
${ ilde g}$	53
$ ilde{\chi}_1^0$	48
\tilde{l}	33
${ ilde t}_1$	22
$\tilde{ u}$	20
$ ilde{\chi}^0_2$	3
total	1993

Conclusion

- we have investigated the impact of a set of 7 and 8 TeV SUSY searches on the pMSSM
- gluino masses below 500 GeV are excluded
- low mass LSPs cannot be ruled out
- the non-excluded pMSSM features must be studied

CMS PAS SUS-13-020

Phenomenological MSSM interpretation of the CMS 7 and 8 TeV results

