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multipole ` = 10− 30 region by both Planck and WMAP
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Inflation Resonant particle Production

• Early rapid expansion of the universe is achieved through the
vacuum energy of the inflaton field

• Inflaton is coupled to the massive particles (mass ∼ inflaton
field value)[Chung et al. arXiv hep-ph/9910437, Mathews et al. arXiv

astro-ph/0406046 ]

• The total Lagrangian density is given as :

Ltot =
1

2
∂µφ∂

µφ− V (φ)

+ iψ̄γµψ −mψ̄ψ + Nλφψ̄ψ (1)



Motivations Results Conclusions

Inflation Resonant particle Production

• Early rapid expansion of the universe is achieved through the
vacuum energy of the inflaton field

• Inflaton is coupled to the massive particles (mass ∼ inflaton
field value)[Chung et al. arXiv hep-ph/9910437, Mathews et al. arXiv

astro-ph/0406046 ]

• The total Lagrangian density is given as :

Ltot =
1

2
∂µφ∂

µφ− V (φ)

+ iψ̄γµψ −mψ̄ψ + Nλφψ̄ψ (1)



Motivations Results Conclusions

Inflation Resonant particle Production

• Early rapid expansion of the universe is achieved through the
vacuum energy of the inflaton field

• Inflaton is coupled to the massive particles (mass ∼ inflaton
field value)[Chung et al. arXiv hep-ph/9910437, Mathews et al. arXiv

astro-ph/0406046 ]

• The total Lagrangian density is given as :

Ltot =
1

2
∂µφ∂

µφ− V (φ)

+ iψ̄γµψ −mψ̄ψ + Nλφψ̄ψ (1)



Motivations Results Conclusions

Inflation Resonant particle Production

• Early rapid expansion of the universe is achieved through the
vacuum energy of the inflaton field

• Inflaton is coupled to the massive particles (mass ∼ inflaton
field value)[Chung et al. arXiv hep-ph/9910437, Mathews et al. arXiv

astro-ph/0406046 ]

• The total Lagrangian density is given as :

Ltot =
1

2
∂µφ∂

µφ− V (φ)

+ iψ̄γµψ −mψ̄ψ + Nλφψ̄ψ (1)



Motivations Results Conclusions

• Then the fermion has the effective mass :

M(φ) = m − Nλφ (2)

• This vanishes for a critical value of the inflaton field,
φ∗ = m/Nλ
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• The fermion vacuum expectation value is :

〈ψ̄ψ〉 = n∗Θ(t − t∗) exp [−3H∗(t − t∗)] (3)

where Θ is a step function.

• The modified E.O.M. for the scalar field is:

φ̈+ 3Hφ̇ = −V ′(φ) + Nλ〈ψ̄ψ〉 (4)
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• The density fluctuation when it crosses the Hubble radius in
case of simplest slow roll approximation is:

δH(k) ≈ H2

5πφ̇
(5)

• In this case using the above equation for the fluctuation as it
exists the horizon the perturbation in the primordial power
spectrum is :

δH =
[δH(a)]Nλ=0

1 + Θ(a− a∗)(Nλn∗/|φ̇∗|H∗)(a∗/a)3 ln (a/a∗)
(6)
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• Multi-dimensional Markov Chain Monte-Carlo analysis is
performed using Planck Data and the CosmoMC code

• We have marginalized over five parameters which do not alter
the matter or CMB transfer function

• The standard parameters which are varied are: A and k∗,
along with the six parameters, Ωbh

2,Ωch
2, θ, τ, ns ,As

• ns and As are normalized at k = 0.05Mpc−1
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• From the likelihood contours the mean value of A = 1.7± 1.5 with
maximum likelihood value of A = 1.5 and the mean value of
k∗ = 0.0011± 0.0004hMpc−1

• The values of A and k∗ relate to inflaton coupling λ and fermion
mass m for a given inflation model:

A = |φ̇∗|−1Nλn∗H−1∗ (7)

• Considering CMB normalization requirement and using Bogoliubov
coefficient and SRA, we finally get :

A ∼ 1.3Nλ5/2 (8)
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• We took a general monomial potential:

V (φ) = Λφm
4
pl

(
φ

mpl

)α
(9)

• The value of φ∗ is given as:

φ∗ =
√

2αN(k∗)mpl (10)
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• For k∗ = 0.0011± 0.0004 h Mpc−1, and kH = a0H0 = (h/3000)
Mpc−1 ∼ 0.0002, we have N − N∗ = ln(kH/k∗) < 1

• N(k∗) ∼ N ∼ 50

• α = 2 we have φ∗ = 14 mpl

• α = 4 we have φ∗ = 20 mpl .

• Nλ ≈ 1, we obtain m ∼ 10 mpl
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Figure: Comparison of the observed galaxy cluster function with the
spectrum implied from the fits to the matter power spectrum with (solid
line) and without (dashed line) resonant particle creation during inflation
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• We have analyzed the CMB power spectrum in the context of a
model for creation of N nearly degenerate Planckian-mass fermions
during inflation

• Marginal evidence for excess power in the Planck CMB power
spectrum consistent with the hypothesis

• Optimum feature at k∗ = 0.0011± 0.0004 h Mpc−1 and
A ≈ 1.7± 1.5
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• This can ultimately be limited by the cosmic variance

• But if our analysis is correct,this may be one of the first hints at
observational evidence of new particle physics at the Planck scale
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