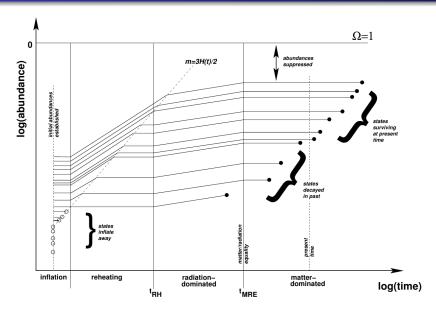
Cosmological Constraints on Dynamical Dark Matter


Patrick Stengel

University of Hawaii

May 5, 2015

with Keith Dienes, Jason Kumar and Brooks Thomas

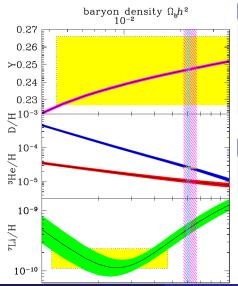
Multicomponent decaying DM that balances Γ_X and Ω_X

Apply decaying DM constraints to a DDM ensemble

Decay Channel	$ au_{X} \lesssim t_{now}$	$ au_{ extsf{X}} \gtrsim t_{ extsf{now}}$
Electromagnetic (Photons)	$BBN \ (\mu + y_{\mathcal{C}})$	Ionization (Diffuse)
Hadronic	BBN	Ionization, AMS p^-
Neutrinos	$C\nu B$ Scattering	IceCube Diffuse
Invisible	Density at t _{MRE}	Relic Density

Parametrizing the DDM ensemble

$$\Gamma_{i} = \Gamma_{0} (m_{i}/m_{0})^{\gamma} \Omega_{i} = \Omega_{0} (m_{i}/m_{0})^{\alpha}$$


$$m_{i} = m_{0} + n^{\delta} \Delta m \quad \gamma, \delta > 0 \quad \alpha < 0$$

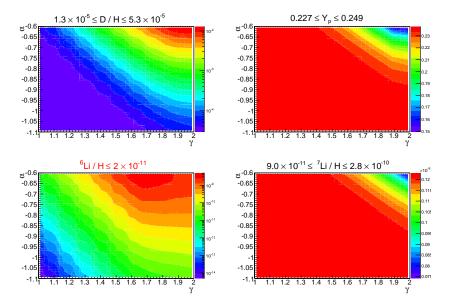
- Normalize Ω_0 to get relic density from components with $\tau_i > t_{now}$
- Assume $m_0 = \Delta m \sim 0.1 \, \mathrm{keV}$ for simplicity and phenomenology
- Motivated by models with "dark tower" of unstable KK modes

This talk assumes decays $ightarrow \gamma \gamma$

- Decays during early universe necessarily from heavier components in ensemble, set $au_0 \sim t_{now}$, $\delta = 1.5$ for BBN
- Decays today require hyperstability of most abundant components, set $\tau_0 \gg t_{now}$, $\delta = 3.0$

EM injection in the early universe can ruin BBN

Degraded photon spectra


- Decay photons cooled by $\gamma + \gamma_{BG} \rightarrow e^+ + e^-$, $e^{\pm} + \gamma_{BG} \rightarrow e^{\pm} + \gamma$
- Will remain in quasistatic equilibrium until thermalization

Photodisintegration $i(\gamma, j)k$

$$\delta Y_i \sim -N_{\gamma} Y_X Y_i \frac{\sigma_{i(\gamma,j)k}}{\sigma_{therm}}$$

Primary: ${}^4\mathrm{He}(\gamma,d)d, \quad d(\gamma,n)p,$ ${}^7\mathrm{Li}(\gamma,n){}^6\mathrm{Li}, \, {}^6\mathrm{Li}(\gamma,np){}^4\mathrm{He},$ ${}^4\mathrm{He}(\gamma,n){}^3\mathrm{He}, \, {}^4\mathrm{He}(\gamma,p)t$ Nuclear: ${}^4\mathrm{He}({}^3\mathrm{He},p){}^6\mathrm{Li}, {}^4\mathrm{He}(t,n){}^6\mathrm{Li}$

$$m_i = m_0 + n^\delta \Delta m \; , \Omega_i = \Omega_0 \left(m_i/m_0
ight)^lpha \; , au_i = au_0 \left(m_i/m_0
ight)^{-\gamma}$$

EM injection at recombination can ionize the CMB

Expands last scattering surface

- Photon cooling processes similar to EM cascades which alter abundances
- Photons that cool on time scales ~ t_H ionize HI
- Constrains injection rate at recombination from components with $\tau_i \gg t_{now}$

imits total instantaneous rate

$$\sum_i \Omega_i \Gamma_i \lesssim 3 \times 10^{-26} \, \mathrm{s}^{-1}$$

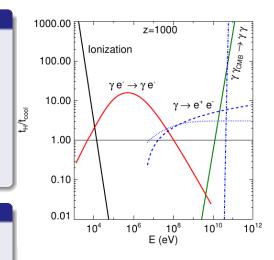
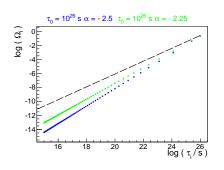
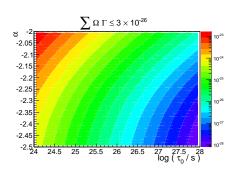




Figure: From 0906.1197, shows time scales for cooling processes as a function of E_{γ} .

$$m_i = m_0 + n^\delta \Delta m \; , \Omega_i = \Omega_0 \left(m_i/m_0
ight)^{\alpha} \; , au_i = au_0 \left(m_i/m_0
ight)^{-\gamma}$$

- ullet Less sensitive to less abundant earlier decaying components, fix $\gamma=2$
- Left plot shows two ensemble model points and limits from 1211.0283
- ullet Decreasing lpha reduces to single component limits requiring $au_0 \gtrsim 10^{26}\,\mathrm{s}$
- More dynamical with increasing α , faster injection with decreasing τ_0

Photons from decays $\sim t_{now}$ contribute to diffuse flux

Boltzmann eqn for each component

$$\dot{n_{\gamma}} + 3Hn_{\gamma} = 2\sum_{i}\Gamma_{i}\frac{\rho_{i}}{m_{i}}$$

$$rac{dn_{\gamma}}{dE_{\gamma}} \sim 6
ho_{c,0} \sum_{i} rac{t_{now}}{ au_{i}} rac{\Omega_{i}}{m_{i}^{2}}$$

- Limits instantaneous injection rate today given $\tau_i \gg t_{now}$
- Each component puts flux into a different "bin" with $E_{\gamma} \sim m_i/2$
- Components do not contribute coherently to the spectrum

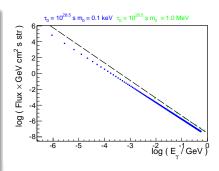
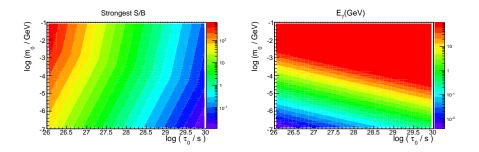



Figure: Diffuse photon flux contributions from dynamical ensembles with $\alpha=-2.1$ and $\gamma=2$. Dashed line is an approximate combination of power laws for the limits described in 1203.1923 .

$$m_i = m_0 + n^\delta \Delta m \; , \Omega_i = \Omega_0 \left(m_i / m_0
ight)^{lpha} \; , au_i = au_0 \left(m_i / m_0
ight)^{-\gamma}$$

- Left plot shows the largest ratio of excess flux over observed limits
- Right plot shows the observed E_{γ} corresponding to largest excess
- $E_{\gamma} \gg m_0$ suggests departure from single component limits
- Heavier less abundant components subject to more stringent limits

Summary and Outlook

- DDM provides for application of decaying DM constraints to multicomponent scenarios
- Light elements can constrain short lived and less abundant DDM ensemble components
- CMB and the diffuse photon flux constrain complementary pieces of hyperstable ensembles

- Alter CMB with decays before recombination and consider additional indirect constraints
- decays and redshift dependence

Calculate with nonuniform

- Include finite detector resolution
- Consider other decay channels, alterations to cosmological timeline and structure formation

Decay Channel	$ au_{X} \lesssim t_{now}$	$ au_{ extsf{X}} \gtrsim t_{now}$
Electromagnetic (Photons)	$BBN \; (\mu \; + \; y_{\mathcal{C}})$	Ionization (Diffuse)
Hadronic	BBN	Ionization, AMS p^-
Neutrinos	$C\nu B$ Scattering	IceCube Diffuse
Invisible	Density at t _{MRE}	Relic Density

Thank you!

