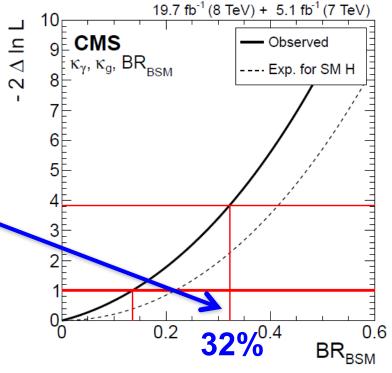


Search for non Standard Model Higgs boson decays in events with boosted dimuons

Sven Dildick (Texas A&M University) On behalf of the CMS Collaboration

Phenomenology 2015 Symposium 4-6 May 2015, University of Pittsburgh

- Motivation
- Beyond the standard model scenarios: dark SUSY & NMSSM
- The CMS detector at the LHC
- Datasets
- Event selection
- Standard model backgrounds
- Model independent results
 - Interpretation in benchmark scenarios: dark SUSY & NMSSM
- Conclusions & outlook


Motivation

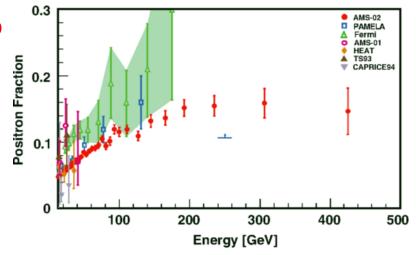
2012 – Milestone in particle physics! Discovery of a scalar boson!

Is it the SM Brout-Englert-Higgs boson?

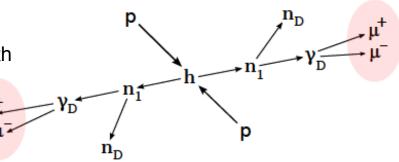
- Precision measurements of its SM branching ratios:
 - Might require several hundreds of fb⁻¹
 - Current 95% CL limit: B_{BSM} ≤ 32%
- Direct searches for non-SM Higgs boson decays:
 - In case of observation: evidence for non-SM Higgs!
 - In case of no observation: restrict a wide range of scenarios beyond the SM

CMS-HIG-14-009 http://arxiv.org/abs/1412.8662

Motivation


- Search for non-SM Higgs boson which decays to new light bosons
 - $h \rightarrow 2a + X \rightarrow 4\mu + X$
 - With m_a between $2m_\mu$ and $2m_T$
- Design the analysis such that results are model independent
 - Can be used for a wide range of BSM scenarios for new light bosons, with boosted dimuons in event topology
- We consider two BSM scenarios:
 - SUSY + dark sector (dark SUSY)
 - Next-to-minimal supersymmetric standard model (NMSSM)

BSM scenario: Dark SUSY


- Observation of rising positron fraction up to 200 GeV by satellite experiments (AMS-02)
- Can it be due to dark matter particles annihilating?

New light bosons mediate attractive potential between slow-moving WIMPs

- Model a simplified dark sector U(1)_D in SUSY
- Higgs decays to SUSY neutralinos n₁
- n_1 decays to dark neutralino n_D (new LSP) + dark photon γ_D
- mass γ_D < 2 GeV
 - no anti-proton excess in cosmic ray spectrum
- Dark photon weakly couples to SM via kinetic mixing with photon

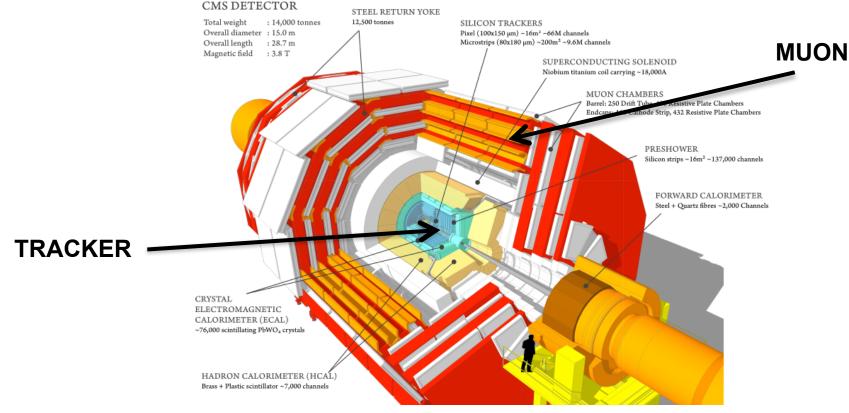
Phys. Rev. Lett. 113, 121101

6

12

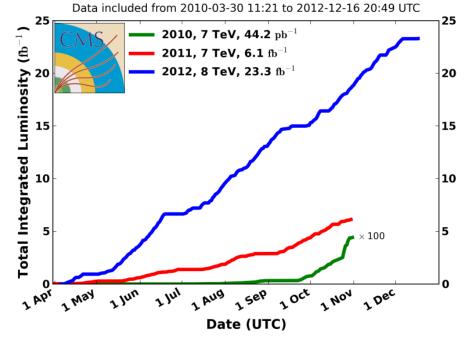
NMSSM: extend minimal SUSY with singlet field "S"

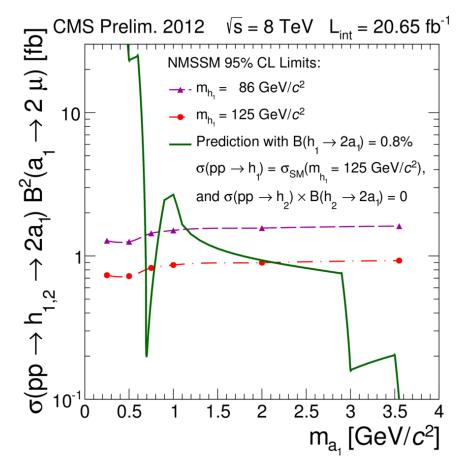
branching ratio when $2m_u < m_{a1} < 2m_T$


 $W_{\rm NMSSM} = W_{\rm Yuk} + \lambda S H_u H_d + \frac{\kappa}{3} S^3$ 0.500 tan8=20 Requires less fine-tuning + dynamical generation of $\int_{\mathfrak{G}}^{\mathfrak{g}_{0.050}^{0.100}}$ μ -term (solves μ -problem) tan\$=3 tanß=2 $\tan\beta = 1.5$ $\tan\beta = 1$ Extended Higgs sector 0.005 - 3 CP-even states (h_{1.2.3}) - 2 CP-odd states (a_{1,2}) 0.001 2 6 8 10 4 2 charged Higgs states H[±] m_a (GeV) Higgs-like scalar boson can be the lightest or the 2nd-lightest CP-even scalar (h_1 or h_2) Phys. Rev. D 81, 075003 $h_{1,2}$ can decay to a new light boson a_1 a₁ couples weakly to SM particles due to its largely singlet nature – In particular a_1 can decay to $\mu\mu$ with dimuon

The CMS detector at the LHC

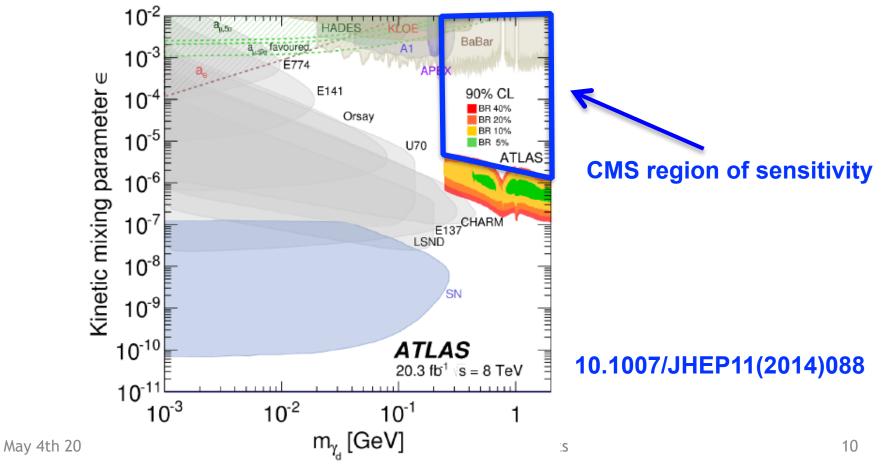
- Multi-purpose detector at LHC
- Excellent muon detection and reconstruction abilities
- This analysis uses information from tracker + muon system




- 2010: 35 pb⁻¹ @ 7TeV <u>10.1007/JHEP07(2011)098</u>
- 2011: 5.3 fb⁻¹ @ 7TeV <u>10.1016/j.physletb.2013.09.009</u>
- 2012: 20.7 fb⁻¹ @ 8TeV (Paper will be sent to PRL soon) - This talk
- 2015: analysis on 13TeV started

CMS Integrated Luminosity, pp

- Search for new light bosons with prompt dimuons
- 95% CL limit on σ(pp->h_{1/2}->2a₁) x B²(a₁->2µ) w.r.t. m_{a1}

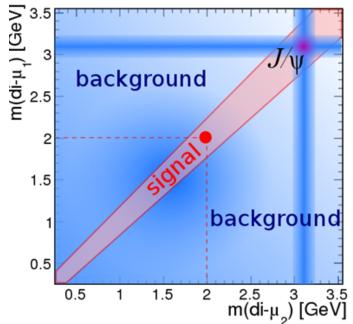


New in this analysis

AM

- Extend search with **displaced** dimuons
 - Dark photon ст between 0 and 5 mm
- Set 2D limit in (dark photon ct is related to kinetic mixing)

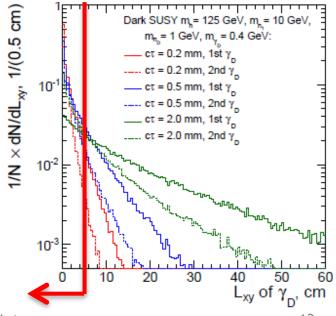
Event selection



Dimuon

- At least 4 muons
 - Dimuon trigger with $p_T = 17$ GeV and 8 GeV (online)
 - 4 muons with 8 GeV in $|\eta| < 2.4$, 1 muon with 17 GeV in $|\eta| < 0.9$ (offline)
- Nearby muons are clustered into pairs of dimuons
 - Based on vertex probability and invariant mass
- Require events with exactly 2 dimuons
 - No limit on number of unpaired muons
- Dimuons must have same production origin

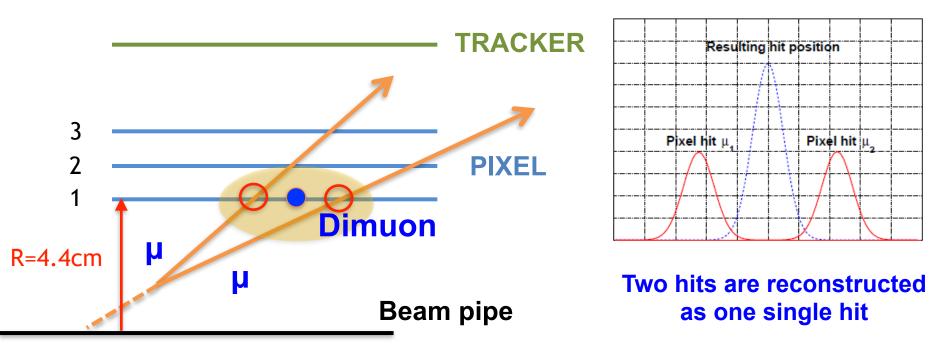
- Dimuons are produced in decay of same type of new light bosons
- Dimuon masses must be compatible
 - Diagonal mass corridor
 - $|m_{\mu\mu1} m_{\mu\mu2}| < 5 x$ mass resolution
 - Use light SM resonances (p, $\omega,\,\varphi,\,J/\psi)$ to study mass resolution



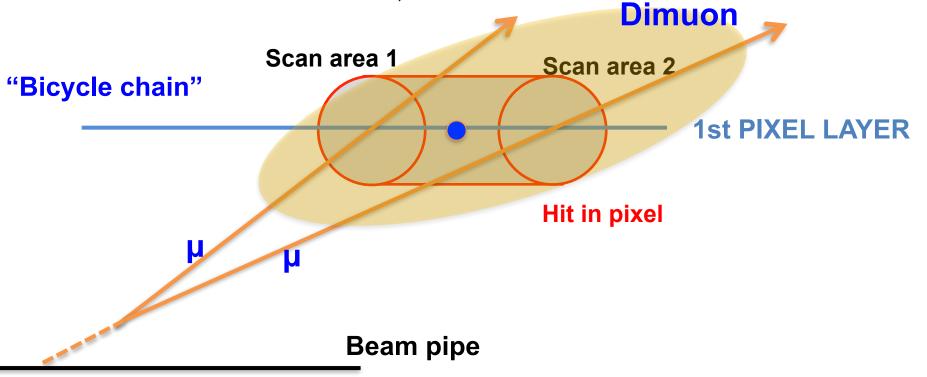
Fiduciality of dimuons

- New in this analysis: **displaced dimuons**!
- Trigger efficiency falls rapidly with larger displacement
- We don't want any effects due to losses in trigger or tracker
- Construct a fiducial region: at least 1 hit in the first pixel layer
 - L_{xy} < 4.4 cm distance perpendicular to the beam pipe
- Ensure model independent interpretation
- Sensitive to signal even with L_{xy} cut

Displaced muon trigger for 2015 analysis to increase fiducial region

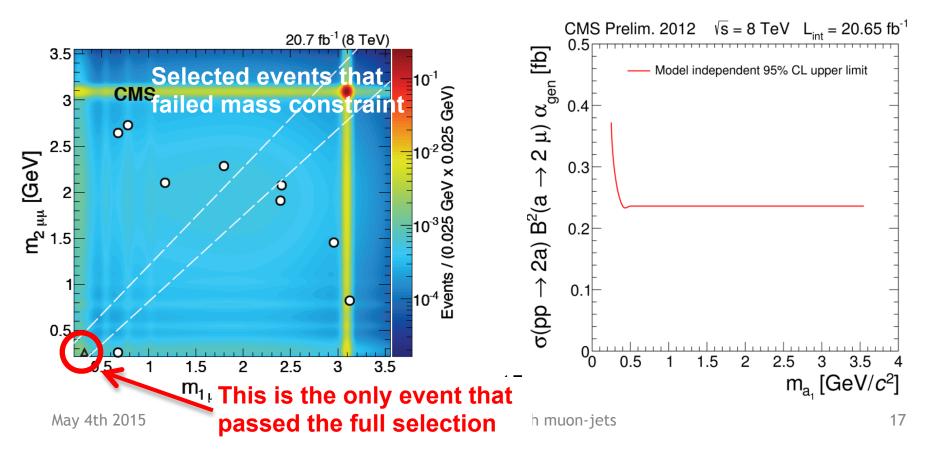


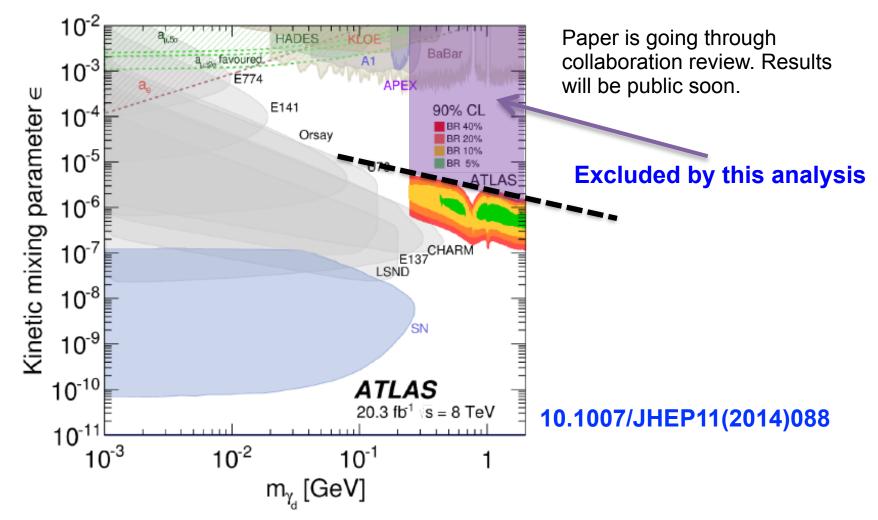
Clustered hit issue



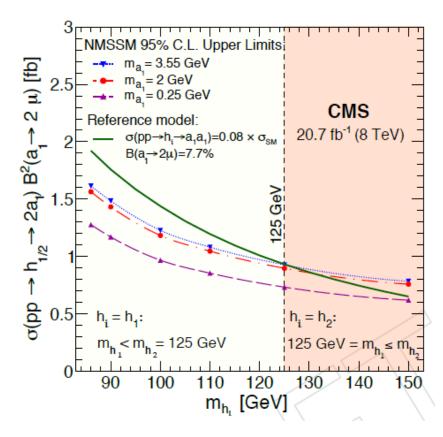
- Displaced muons from very light dark $m_{VD} = 2m_{\mu}$ are highly parallel and spatially close to one another in tracker
- Dimuon hits in the 1st pixel layer can end up being clustered into a single hit, not assigned to either muon: event fails selection

- A hit recovery technique was developed for this analysis
 - Extrapolate muon trajectories to 1st layer of the pixel detector
 - Collect all nearby pixel hits in scan areas 1 and 2 and in between
 - If hit was found in scan area, recover dimuon


- B-Bbar: 2.0 ± 0.7
 - Both b quarks decay into a pair of muons, via semileptonic decay of b-quark and daughter c-quark, or via resonances (ρ , ω , ϕ , J/ψ)
- Prompt double J/ ψ production: 0.05 ± 0.03
- Electroweak production of dimuons: 0.15 ± 0.03
 - pp→ Z/γ^{*} → 4μ
- Total SM background: 2.2 ± 0.7



- After full event selection only one event survives in data (20.7 fb⁻¹)
- Consistent with SM expectation (2.2 ± 0.7 events)
- Model independent limit on cross section x (branching ratio)²



Benchmark scenario: NMSSM

- 95% CL upper limits as function of m_h on σ(pp->h_{1/2}->2a₁) x B²(a₁->2µ)
- Assume one of the two CP-even higgs is LHC higgs boson, then the other one is lighter or heavier.
- Invisible BSM fraction (0.08) was tuned such that model cross section intersects with blue line at 125 GeV (<<32% Exp.)
- $B(a_1 2\mu) = 7.7\%$ from theory
- Limit at each mass point is calculated as if only source of signal events is CPeven higgs boson with corresponding mass

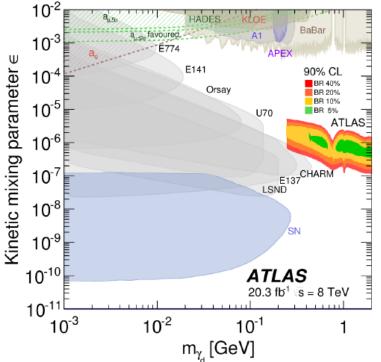
Conclusions & outlook

- A search for new light bosons was presented
 - Decaying to prompt or displaced dimuons
- 1 event observed in 20.7 fb⁻¹ of data consistent with SM expectation
- 95% CL model independent limit is set
- Results are applicable to a whole range of non-SM scenarios
- Interpreted in 2 benchmark scenarios:
 - dark SUSY and NMSSM
- Analysis will be continued in Run-II with improved trigger

STAY TUNED!!!

Backup slides

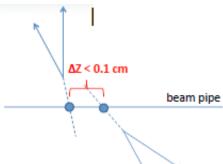
AM


• Ctau is related to kinetic mixing parameter in following way:

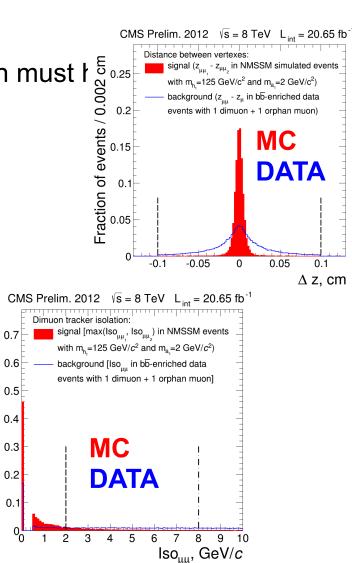
$$c\tau_{\gamma_D}(\epsilon, m_{\gamma_D})[mm] = \frac{1.97 \cdot 10^{-13} [GeV \cdot mm]}{\epsilon^2} \times f(m_{\gamma_D}) [GeV^{-1}],$$

Monte Carlo event simulation

- NMSSM
 - Higgs production via gg-fusion with Pythia Decay to 2A_{NMSSM}
 - Higgs masses between 90 and 150 GeV
 - Mass $A_{\rm NMSSM}$ between 0.25 and 3.55 GeV
- Dark SUSY
 - Higgs production via gg-fusion with MadGraph
 - Bridge program to force Higgs to decay via
 - $H \rightarrow 2n_1, n_1 \rightarrow n_D + \gamma_D, \gamma_D \rightarrow 2\mu$
 - $m(n_1) = 10 \text{GeV}, m(n_D) = 1 \text{GeV}, m(\gamma_D) \text{ between}$ 0.25 and 2 GeV
 - Decay length between 0 and 5 mm


Events are processed through detailed simulation of CMS based on GEANT4

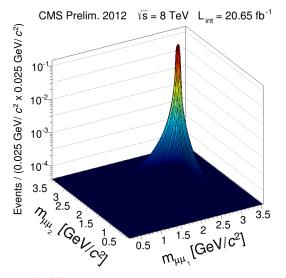
A M

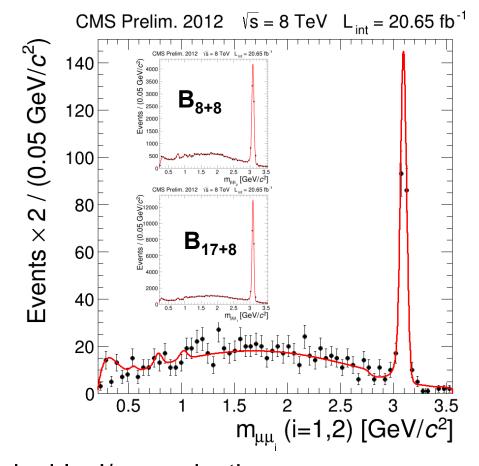


Additional requirements for dimuons

- Dimuon originating from same light boson must ł same production origin
 - Require $\Delta z < 0.1$ cm

- Require low activity around dimuons
 - Select tracks with pT > 0.5GeV
 - Require total isolation < 2GeV

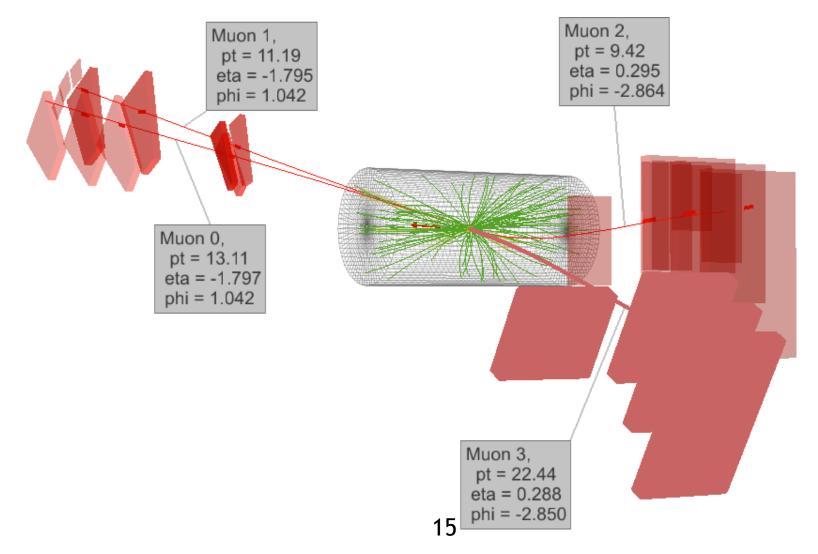



10

Fraction of events / 0.1 GeV/c

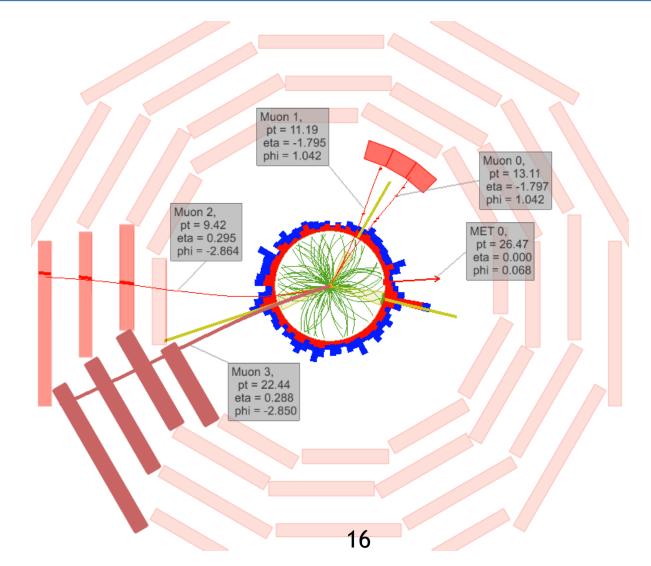
Standard model backgrounds

- BBbar
 - Both B-quarks decay to dimuons + X via double semileptonic decays + resonances (ρ, φ, J/ψ)
 - 1 background templates (B₁₇₊₈ and B₈₊₈) from BB enriched data with 3 muons, no isolation requirement and normalized to data



- Direct double J/ψ production:
 - 2D Crystal Ball template normalized to data

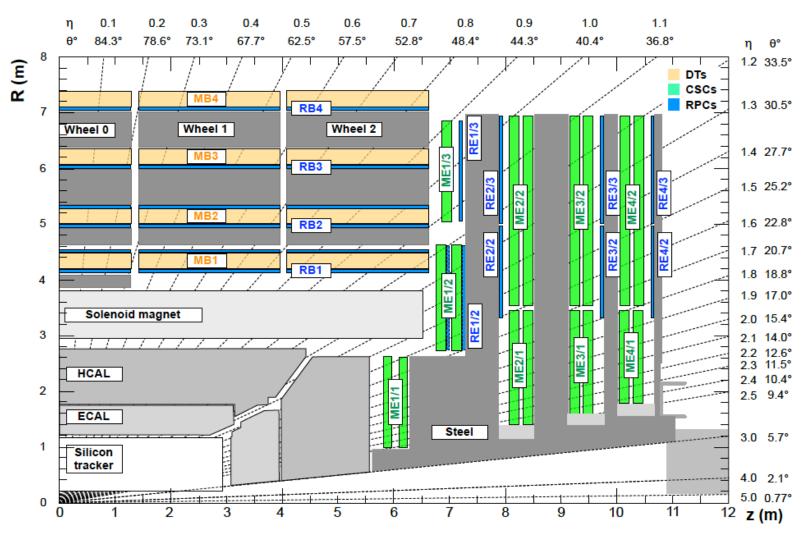
ĀM


Event display

A M

Event display

- Paper with 2012 results will be submitted to PRL soon
- This analysis will be continued on 13TeV collision data
- We developed a high level trigger algorithm dedicated for displaced muons studies
- Monte Carlo production ongoing



Systematic uncertainties

Source of uncertainties	Error, %
Integrated luminosity	2.6%
Muon HLT	1.5%
Muon ID	$4 \times 1\%$
Muon tracking	4 imes 0.2%
Overlapping in Tracker	$2 \times 1.2\%$
Overlapping in Muon System	$2 \times 1.3\%$
Dimuons mass consistency	1.5%
NNLO Higgs p_T re-weighting	2.0%
$PDF+\alpha_s$	3.0%
Total	7.3%

ĀΜ

CMS in Run-2

Non-SM Higgs searches with muon-jets

ĀM