Pushing the Frontiers of Perturbative QCD

Jesse Diaz Thaler

(Contrary to Indico, Kempner → Diaz in 2007)

Pheno 2015, University of Pittsburgh — May 5, 2015

Pushing the Frontiers of Perturbative QCD

Has realized: "Jets!"

Pheno 2015, University of Pittsburgh — May 5, 2015

Four Decades of Jets and pQCD UA2, 1982

A QCD Renaissance

c. 2008-present

LHC (vs. Tevatron)

Higher Energy (≈ x3.5–7)
Higher Luminosity (≈ x10–20)

Finer Segmentation (≈ x5)

Theoretical Progress

New Jet Algorithms (esp. anti-k_T) Loop/Leg/Log Explosion Jet Substructure

[Anti-kT: Cacciari, Salam, Soyez, 2008]

[BDRS: Butterworth, Davison, Rubin, Salam, 2008; see also Seymour, 1991, 1994]

Challenging the Standard Lore

c. 2012-present

IRC Safe IRC Unsafe

Old Lore: Calculable in pQCD?

Controlled Λ_{QCD} Effects?

Challenging the Standard Lore

c. 2012-present

New Lore: Calculable in pQCD? \checkmark \checkmark *

Controlled \land_{QCD} Effects? \checkmark *

Challenging the Standard Lore

c. 2012-present

All observables are calculable, but some observables are more calculable than others.

≈ George Orwell, Animal Farm

Outline

Review of Safe Observables

A Standard Candle for Jets

Two New Tools for pQCD

Review of Safe Observables

A Standard Candle for Jets

Two New Tools for pQCD

Infrared/Collinear Safety

IRC Safe Observable: Insensitive to IR or C emissions

Infrared/Collinear Safety

IRC Safe Observable: Insensitive to IR or C emissions

Examples from Jet Substructure

Jet pt:
$$\displaystyle \sum_{i \in \mathrm{jet}} p_{T,i}$$
 IRC Safe

PT
$$^{ extsf{D}}$$
: [CMS HIG-11-027] i

ptD:
$$\sum_{i \in \text{jet}} \frac{p_{T,i}^2}{p_{T\text{jet}}^2} \quad \text{IR Safe C Unsafe}$$

 $i \in jet$

IRC Unsafe

Jet Mass:
$$\sum_{i,j \in \text{jet}} p_i \cdot p_j$$
 IRC Safe

N-subjettiness:
$$\sum_{i \in \text{jet}} p_{T,i} \min \left\{ \Delta R_{i,1}, \Delta R_{i,2}, \ldots, \Delta R_{i,N} \right\}^{\beta} \quad \text{IRC Safe}$$

With IRC safe

jet algorithm

All IRC safe observables are alike; each IRC unsafe observable is unsafe in its own way.

≈ Leo Tolstoy, Anna Karenina

(see backup for recent precision fixed-order calculations)

Review of Safe Observables

A Standard Candle for Jets

Two New Tools for pQCD

Textbook QCD

Basis of parton shower MC generators, PDF evolution, NLO subtractions, ...

Measurable?

$$\int rac{\mathrm{d} heta}{ heta} \, \mathrm{d}z \, P(z)$$
 Collinear singularity Soft singularity $P(z) \simeq rac{1}{z}$

Angular-ordered tree...

Angular-ordered tree...

...gives splitting function?

Soft Drop
$$(\beta = 0)$$

$$z>z_{
m cut}$$

Groomed angular-ordered tree...

...gives splitting function?

$$\frac{1}{\int \frac{d\theta}{\theta} dz P(z)}$$
7 IR Safe

[Larkoski, Marzani, Soyez, JDT, 1402.2657]

Soft Drop
$$(\beta = 0)$$

$$z>z_{
m cut}$$

One prong jet...

VS.

...gives splitting function?

$$\downarrow$$
 $|z|$

$$\int \frac{\mathrm{d}\theta}{\theta} \, \mathrm{d}z \, P(z)$$

[Larkoski, Marzani, Soyez, JDT, 1402.2657]

[see also Butterworth, Davison, Rubin, Salam, 0802.2470; Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

How to calculate from first principles?

(see backup for how our elders addressed this in 1978)

Zg IR Safe C Unsafe

Z_g m>0 IRC Safe

Measure jet mass?

Zg IR Safe C Unsafe

Measure jet mass?

Zg ^{m>0} IRC Safe

Jet mass never zero!

Zg Sudakov Safe

Zg IR Safe C Unsafe Measure jet mass?

Zg ^{m>0} IRC Safe

Jet mass never zero!

Zg Sudakov Safe

Zg IR Safe C Unsafe Measure jet mass?

Zg ^{m>0} IRC Safe

Jet mass never zero!

Zg Sudakov Safe

$$rac{\mathrm{d}\sigma}{\mathrm{d}z_{m{g}}} \simeq F(z_{m{g}})$$

Zg IR Safe
C Unsafe
Absorb singularities into universal function (just like PDFs!)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_{g}} \simeq F(z_{g}) - \frac{1}{2\epsilon} \frac{\alpha_{s}C}{\pi} F(z_{g}) + \frac{\alpha_{s}C}{\pi} \int \frac{\mathrm{d}\theta}{\theta} P(z_{g})$$

Zg IR Safe
C Unsafe Absorb singularities into universal function (just like PDFs!)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_{g}} \simeq F(z_{g}) - \frac{1}{2\epsilon} \frac{\alpha_{s}C}{\pi} F(z_{g}) + \frac{\alpha_{s}C}{\pi} \int \frac{\mathrm{d}\theta}{\theta} P(z_{g})$$

Zg IR Safe
C Unsafe Absorb singularities into universal function (just like PDFs!)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_{g}} \simeq F(z_{g}) - \frac{1}{2\epsilon} \frac{\alpha_{s}C}{\pi} F(z_{g}) + \frac{\alpha_{s}C}{\pi} \int \frac{\mathrm{d}\theta}{\theta} P(z_{g})$$

[Larkoski, Marzani, JDT, 1502.01719]

A Standard Candle for Jets

$$\Rightarrow \Rightarrow \Rightarrow z_{\text{cut}}$$

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \frac{\overline{P}_i(z_g)}{\int_{z_{\mathrm{cut}}}^{1/2} dz \, \overline{P}_i(z)} + \dots$$

$$\mathbf{Z}_{\mathbf{g}} \Rightarrow P(z)$$

- \approx independent of α_s (!)
- \approx independent of jet p_T and radius
- \approx same for quarks and gluons

calculable deviations from universality

"Phase Diagram" for Observables

Review of Safe Observables

A Standard Candle for Jets

Two New Tools for pQCD

I. Isolated Singularity? Try Sudakov Form Factor

Want:
$$p(u) = \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}u}$$

I. Isolated Singularity? Try Sudakov Form Factor

Want:
$$p(u) = \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}u}$$

Need:
$$p(u|s) = \frac{p(u,s)}{p(s)}$$
 ...with Safe companion

I. Isolated Singularity? Try Sudakov Form Factor

Want:
$$p(u) = \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}u}$$

Need: $p(u|s) = \frac{p(u,s)}{p(s)}$

...with Safe companion

Finite distribution $\begin{array}{c} \downarrow \\ \text{Insight:} \quad p(u) = \int \mathrm{d}s \, p(s) \, p(u|s) \\ & \uparrow \quad \uparrow \\ \text{Sudakov form factor} \quad \text{Perturbative} \\ \text{(all orders in } \alpha_{\mathrm{s}}) \quad \text{(fixed order in } \alpha_{\mathrm{s}}) \end{array}$

Suppresses isolated singularities... ...at each perturbative order

Ratio Observables

Ubiquitous in jet substructure (e.g. N-subjettiness)

Fantastic data/MC agreement

Jets / 0.08 2010 Data, L = 35pb⁻¹ ATLAS 5000 τ_2/τ_1 4000 3000 2000 anti-k, R=1.0 jets 300 < p_T < 400 GeV 1000 $N_{PV} = 1, |y| < 2$ 0.2 0.4 0.6 N-subjettiness τ₂₁

[ATLAS, 1203.4606]

IRC Safe Numerator

IRC Safe Denominator singularity at zero...

= IRC Unsafe Ratio

[Soyez, Salam, Kim, Dutta, Cacciari, 1211.2811]

Ratio Observables

Ubiquitous in jet substructure (e.g. N-subjettiness)

Fantastic data/MC agreement

Jets / 0.08 2010 Data, L = 35pb **ATLAS** 5000 T_2/T_1 4000 3000 2000 anti-k, R=1.0 jets 1000 $300 < p_{\tau} < 400 \text{ GeV}$ $N_{PV} = 1, |y| < 2$ MC / Data 0.2 0.6 0.4 N-subjettiness τ₂₁

[ATLAS, 1203.4606]

IRC Safe Numerator

IRC Safe Denominator singularity at zero...

...regulated by Sudakov

(in parton showers by construction)

= IRC Unsafe Ratio

[Soyez, Salam, Kim, Dutta, Cacciari, 1211.2811]

= Sudakov Safe Ratio

[Larkoski, JDT, 1307.1699; see also Larkoski, Moult, Neill, 1401.4458; Procura, Waalewijn, Zeune, 1410.6483]

2. Collinear Unsafe? Try Fragmentation Function

Weighted Jet Charge...

$$Q_{\rm W}(p) = \sum_i z_i^p q_i$$

[Feynman, Field, 1978]

2. Collinear Unsafe? Try Fragmentation Function

Weighted Jet Charge...

$$Q_{\rm W}(p) = \sum_i z_i^p q_i$$

[Feynman, Field, 1978]

...on Firm Theoretical Ground

$$\mu\frac{\mathrm{d}}{\mathrm{d}\mu}\,D_i(Q,\kappa,\mu) = \frac{1}{2}\sum_j\int\!\mathrm{d}Q_1\,\mathrm{d}Q_2\,\mathrm{d}z\,\gamma^D_{ij}(z,\mu) \\ \times D_j(Q_1,\kappa,\mu)D_{a(ij)}(Q_2,\kappa,\mu) \\ \times \delta[Q-z^\kappa Q_1-(1-z)^\kappa Q_2]$$
 (see backup for track function)

[Krohn, Schwartz, Lin, Waalewijn, 1209.2421; Waalewijn, 1209.3019] [see also Larkoski, JDT, Waalewijn, 1408.3122] [ATLAS-CONF-2013-086]

Summary

Review of Safe Observables

Infrared and collinear safe observables defined order-by-order in α_s Successful (and growing) program of higher-order calculations

A Standard Candle for Jets

New way to measure the universal singularity structure of QCD All orders in α_s yields new insights into QFT

Two New Tools for pQCD

Isolated singularity? Sudakov form factor! (e.g. Sudakov safety of ratios) Collinear unsafe? Fragmentation function! (e.g. jet charge, tracks, p_T^D)

Backup Slides

Total Cross Sections

e.g. Gluon Fusion to Higgs

First N³LO Calculation at a Hadron Collider

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger, 1503.06056; + Furlan, Gehrmann, 1403.4616; see also Li, Manteuffel, Schabinger, Zhu, 1412.2771]

Differential Cross Sections

e.g. Fractional Jet Counting with "Jets Without Jets"

$$\widetilde{N}_{\rm jet}(p_{T{\rm cut}},R) = \sum_{i\in {\rm event}} \frac{p_{Ti}}{p_{Ti,R}}\,\Theta(p_{Ti,R}-p_{T{\rm cut}}) \qquad {\rm IRC~Safe}$$

[Bertolini, Chan, JDT, 1310.7584; Bertolini, JDT, Walsh, 1501.01965]

0. Learn from Our Elders

Me: "φ is IRC unsafe"

My Elder: "We explicitly calculated $d\sigma/d\phi$ in 1978"

$$\frac{2\pi}{\sigma_0} \frac{d\sigma}{d\varphi} = 1 + O(\alpha_s(Q^2)) + \frac{\alpha_s(Q^2)}{\pi} (\frac{16}{3} \ln \frac{3}{2} - 2) \cos 2\varphi$$
Born cross section despite ambiguity (!)

Lesson: Use IRC limit to resolve ambiguities

[Pi, Jaffe, Low, 1978; Kramer, Schierholz, Willrodt, 1978]

Track-Based Observables

Track Jets:
$$x = \frac{E_{\text{tracks}}}{E_{\text{jet}}}$$

Track Functions:

$$T_i(x;\mu)$$

Non-perturbative object with perturbative evolution (just like PDFs!)

track fraction Non-linear DGLAP

[Chang, Procura, IDT, Waalewijn, 1303.6637, 1306.6630]