Mini-Review: Physics with Electroweakinos

Stefania Gori

Perimeter Institute for Theoretical Physics

Phenomenology 2015 symposium

Pittsburgh, May 5th 2015

Motivation I: Susy and Naturalness

Why light electroweak (EW) particles?

SUSY cancels the quadratic sensitivity of the Higgs mass to some New Physics (NP) scale, but ...

$$\begin{cases} \frac{m_{\rm Higgs}^2}{2} = -|\mu|^2 + \dots + \delta m_H^2 & \text{Mass scale for Higgsinos} \\ \delta m_{H_u|\rm stop}^2 \propto \frac{1}{16\pi^2} y_t^2 \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2\right) \log\left(\frac{\Lambda}{\rm TeV}\right) & \frac{\tilde{g}}{\tilde{b}_L} \\ \delta m_{H_u|\rm gluino}^2 \propto \frac{1}{16\pi^2} y_t^2 \left(\frac{\alpha_s}{\pi}\right) |M_3|^2 \log^2\left(\frac{\Lambda}{\rm TeV}\right) & \frac{\tilde{t}_L}{\tilde{b}_L} & \frac{\tilde{t}_R}{\tilde{b}_L} \end{cases}$$

Papucci, Ruderman, Weiler, 1110.6926

Valid also beyond the Minimal Supersymmetric Standard Model (MSSM)

• Typically, SUSY breaking mediation schemes predict $m_{\tilde{W}}, m_{\tilde{B}} < m_{\tilde{g}}$

Motivation I: Susy and Naturalness

Why light electroweak (EW) particles?

SUSY cancels the quadratic sensitivity of the Higgs mass to some New Physics (NP) scale, but ...

$$\begin{cases} \frac{m_{\rm Higgs}^2}{2} = -|\mu|^2 + \dots + \delta m_H^2 & \text{Mass scale for Higgsinos} \\ \delta m_{H_u}^2|_{\rm stop} \propto \frac{1}{16\pi^2} y_t^2 \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2\right) \log\left(\frac{\Lambda}{\text{TeV}}\right) & \frac{\tilde{g}}{\tilde{b}_L} \\ \delta m_{H_u}^2|_{\rm gluino} \propto \frac{1}{16\pi^2} y_t^2 \left(\frac{\alpha_s}{\pi}\right) |M_3|^2 \log^2\left(\frac{\Lambda}{\text{TeV}}\right) & \frac{\tilde{t}_L}{\tilde{b}_L} & \frac{\tilde{t}_R}{\tilde{b}_L} \end{cases}$$

Papucci, Ruderman, Weiler, 1110.6926

Valid also beyond the Minimal Supersymmetric Standard Model (MSSM)

• Typically, SUSY breaking mediation schemes predict $m_{\tilde{W}}, m_{\tilde{B}} < m_{\tilde{g}}$

Conclusion.

Naturalness EW particles generically at the bottom of the SUSY spectrum

Motivation II: Susy and Un-Naturalness

A "simply un-natural Susy spectrum": gauginos quite lighter than sfermions Hall, Nomura '11
Arvanitaki et al. '12
Arkani-Hamed et al. '12 ...
Split Susy inspired models

$$\mathcal{L}_{SB} \supset \frac{1}{M_*^2} \int d^4 \theta (X^{\dagger} X) (\Phi^{\dagger} \Phi + H_u H_d)$$
$$-\frac{\alpha_i b_i}{4\pi} \frac{m_{3/2}}{2} \lambda_i \lambda_i - \frac{m_{3/2}}{2} \tilde{G} \tilde{G} + \int d^4 \theta (H_u H_d)$$

* scalar masses of order

$$F_X/M_* \gtrsim F_X/M_{
m Pl} = m_{3/2}$$

- Higgsino mass model dependent: could be order gravitino mass or additionally suppressed
- gaugino masses 1-loop factor below the gravitino mass

Motivation III: Susy and Dark Matter

Supersymmetry has a "natural" DM candidate, once the R-parity is imposed: the lightest SUSY particle (LSP)

Higgsino, Binos, Winos can be DM

They can even account for the measured relic density.

Two scales to aim for

Higgsino: ~1TeV

Wino: ~2.5TeV

Present status of EW-ino searches

At 400 GeV:

$$\sigma(\tilde{g}\tilde{g}) \sim 20 \,\mathrm{pb}$$
 $\sigma(\tilde{\chi}^{\pm}\tilde{\chi}^{\pm}) \sim 0.02 \,\mathrm{pb}$

Present status of EW-ino searches

At 400 GeV: $\sigma(\tilde{g}\tilde{g}) \sim 20 \, \mathrm{pb}$ $\sigma(\tilde{\chi}^{\pm}\tilde{\chi}^{\pm}) \sim 0.02 \, \mathrm{pb}$

Present status of EW-ino searches

Assumptions:

- Mainly Wino NLSP, Bino LSP
- X_2 and X^{\pm} are degenerate in mass
- 100% branching ratios

Projections of EW-ino searches

- 100% branching ratios

"EW questions" for the next few years

14 TeV LHC vs. 7-8 TeV LHC

- ◆ Production <u>cross sections</u> increase by a factor of ~2 (for ~400GeV ew-inos)
- ◆ Much more <u>luminosity</u> achievable (3000 fb⁻¹ vs. ~25 fb⁻¹)
- ◆ Cross sections of <u>subleading production modes</u> become relevant: VBF production of ~200GeV charginos at the level of O(10fb)

- Can <u>additional production modes</u> play an important role?
- How can we probe the <u>squeezed region</u>?
- What can the <u>Higgs</u> tell us?
- Will we be able to have <u>access to a pure Higgsino or Wino state DM</u>? If not, what energy do we need?

Squeezed region

Why is it difficult?

$$\begin{array}{ccc} \chi_2^0 & \rightarrow & Z^{(*)}\chi_1^0 \rightarrow \ell\ell + \text{MET} \\ \chi_1^{\pm} & \rightarrow & W^{(*)}\chi_1^0 \rightarrow \ell + \text{MET} \end{array}$$

Small lepton p_T and small MET.

 Small invariant mass of opposite sign same flavor leptons (OSSF) m_{__}

Present multi-lepton searches ask for

Single or di-lepton trigger(~ 10 GeV - 20 GeV)

• m_{...} > 12 GeV

SG, Jung, Wang, 1307.5952

Squeezed region

Why is it difficult?

$$\begin{array}{ccc} \chi_2^0 & \rightarrow & Z^{(*)}\chi_1^0 \rightarrow \ell\ell + \mathrm{MET} \\ \chi_1^\pm & \rightarrow & W^{(*)}\chi_1^0 \rightarrow \ell + \mathrm{MET} \end{array}$$

- Small lepton p_T and small MET.
- Small invariant mass of opposite sign same flavor leptons (OSSF) m_{__}

Present multi-lepton searches ask for

Single or di-lepton trigger(~ 10 GeV - 20 GeV)

• m_" > 12 GeV

SG, Jung, Wang, 1307.5952

How to do better?

Production of ew-inos in association with something

- VBF production (VBF trigger?) see for example Giudice, Han, Wang, Wang, 1004.4902
- EW-inos produced in association with one jet/photon/Z Mono-something trigger or trigger on the decay products of the EW-inos?

Proposed search: ISR jet+3 (soft) leptons

SG, Jung, Wang, 1307.5952

$$pp \rightarrow \chi_2^0 \chi_1^{\pm} + j$$

$$\chi_2^0 \rightarrow Z^{(*)}\chi_1^0 \rightarrow \ell\ell + \text{MET}$$

$$\chi_1^{\pm} \rightarrow W^{(*)}\chi_1^0 \rightarrow \ell + \text{MET}$$

 $MET/p_T(j_1)$

Estimation the reach at Run I

Call for experimentalists!

Improvement on $S/\sqrt{B+(0.15\cdot B)^2}$ in comparison with the ATLAS search

Estimation the reach at Run II

Call for experimentalists!

How can we improve on this at Run II?

Improvement on $S/\sqrt{B+(0.15\cdot B)^2}$ in comparison with the ATLAS search

An independent probe: the Higgs

Charginos can be probed by the measurement of the Higgs di-photon coupling

An independent probe: the Higgs

Charginos can be probed by the measurement of the Higgs di-photon coupling

The NP effects are typically small, but could be accessible in the future

An independent probe: the Higgs

Charginos can be probed by the measurement of the Higgs di-photon coupling

The NP effects are typically small, but could be accessible in the future

$$rac{\Delta}{(4\pi^2)^2}rac{h}{v}F_{\mu
u}F^{\mu
u}rac{\partial \log \det(M(v))}{\partial \log v} \ \Delta A_{\gamma\gamma} \propto -rac{m_W^2 s_eta c_eta}{M_2 u}$$

1401.6081 Snowmass

"EW questions": testing DM models

- How much are higher energies going to buy us in the reach for EW particles?
- ◆ Can we have access to pure Higgsino (or Wino) states, as possible DM candidates?
- 1. Wino-Higgsino scenario NLSP LSP

"EW questions": testing DM models

- How much are higher energies going to buy us in the reach for EW particles?
- Can we have access to pure Higgsino (or Wino) states, as possible DM candidates?

1. Wino-Higgsino scenario NLSP - LSP

Because of the Goldstone equivalence theorem: Jung. $BR(NLSP \longrightarrow LSP Z) = BR(NLSP \longrightarrow LSP h) \sim 1/4$ 1404.2691

 C_2 , N_3 (Wino-like) C_1, N_1, N_2 (Higgsino-like)

3L

OSDI

SSDL

Higgsino DM

12/15

SG, Jung, Wang,

"EW questions": testing DM models

- How much are higher energies going to buy us in the reach for EW particles?
- Can we have access to pure Higgsino (or Wino) states, as possible DM candidates?

2. Higgsino-Wino scenario NLSP - LSP

Because of the <u>Goldstone equivalence theorem</u>: Jung. $BR(NLSP \longrightarrow LSP Z) = BR(NLSP \longrightarrow LSP h) \sim 1/3$ 1404.2691

 C_2 , N_2 , N_3 (Higgsino-like) C_1 , N_1 (Wino-like)

Wino DM

SG, Jung, Wang,

Disappearing track searches could be the route. Low, Wang, 1404.0682

A brand new collider!

Issues and opportunities

Identification of <u>very boosted leptons</u>. Measurement of their flavor and charge

The SSDL channel can be particularly affected by this issue

A brand new collider!

Issues and opportunities

Identification of <u>very boosted leptons</u>. Measurement of their flavor and charge

The SSDL channel can be particularly affected by this issue

Lepton <u>separation criterion</u> will affect a lot the reach of the 3 lepton channel

Comparison with the gluino reach

Split Susy also implies not too heavy gluinos. How does the reach compare?

From Cohen et al. 1311.6480

Comparison with the gluino reach

Split Susy also implies not too heavy gluinos. How does the reach compare?

From Cohen et al. 1311.6480

Similar argument for the LHC ~3 TeV reach for gluinos

In mSUGRA:

$$M_1: M_2: M_3 \sim 1:2:6$$

$$M_1 \ge 2.5 \text{ TeV}, M_2 \ge 5 \text{ TeV}$$

Independently on the Higgsino mass, we cannot probe such heavy Binos, Winos

In AMSB:

$$M_1: M_2: M_3 \sim 3:1:8$$

$$M_1 \ge 5.5 \text{ TeV}, M_2 \ge 2 \text{ TeV}$$

This scenario can be probed by the 3 lepton signature if Higgsinos are lighter than ~1.2 TeV (Wino-Higgsino scenario)

Conclusions & remarks

Electroweakinos play a special role in natural and un-natural SUSY theories

- Great prospects for probing "difficult regions" in the coming years: squeezed spectra!
- Looking more forward: the role of future colliders
- Higgs coupling measurements can play an important role
- A 100 TeV pp collider with 3000 fb⁻¹ data could probe Higgsino Dark Matter, if Winos are not too heavy

Proposed search: correlation variables

Some kinematics:

$$egin{aligned} -ec{E}_T^{
m miss} &= ec{p}_T(j_1) + \sum ec{p}_T(\ell), \qquad |ec{p}_T(\ell)| \sim \gamma E_\ell^0 \ & \left(E_\ell^0
ight)_{
m sig} \sim \Delta, \, \Delta \equiv m_{\chi_2} - m_{
m LSP} \ll m_{\chi_2} \ & \left(E_\ell^0
ight)_{
m bkgd} \sim m_{W,Z}/2 \ & \gamma \sim rac{\sqrt{p_T^2(j_1)/4 + M^2}}{M} \ & M_{
m sig} \sim m(\chi_2), \, M_{
m bkgd} = m_{
m W,Z} \end{aligned}$$