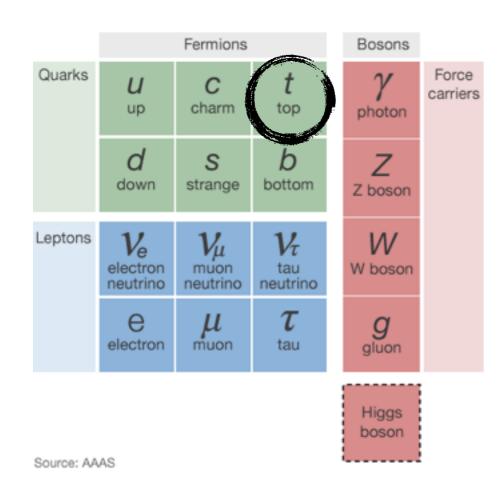
Top quark pair properties using the ATLAS detector at the LHC

B Galhardo on behalf of the ATLAS collaboration

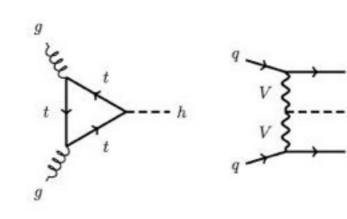


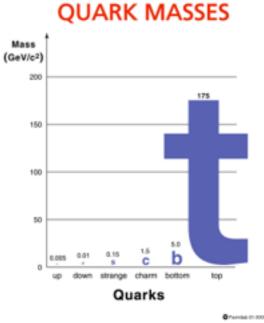
C

U

Phenomenology 2015 Pittsburgh, May 4-6

Top quark

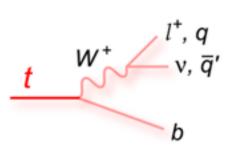

• First observed in 1995 by CDF and DØ (Tevatron)


[F Abe et al, PRL, 74:2626-2631, 1995; S. Abachi et al, PRL, 74:2632-2637, 1995]

• Mass = $173.34 \pm 0.76 \text{ GeV}$ [arXiv:1403.4427]

Heaviest of all fundamental particles in the SM

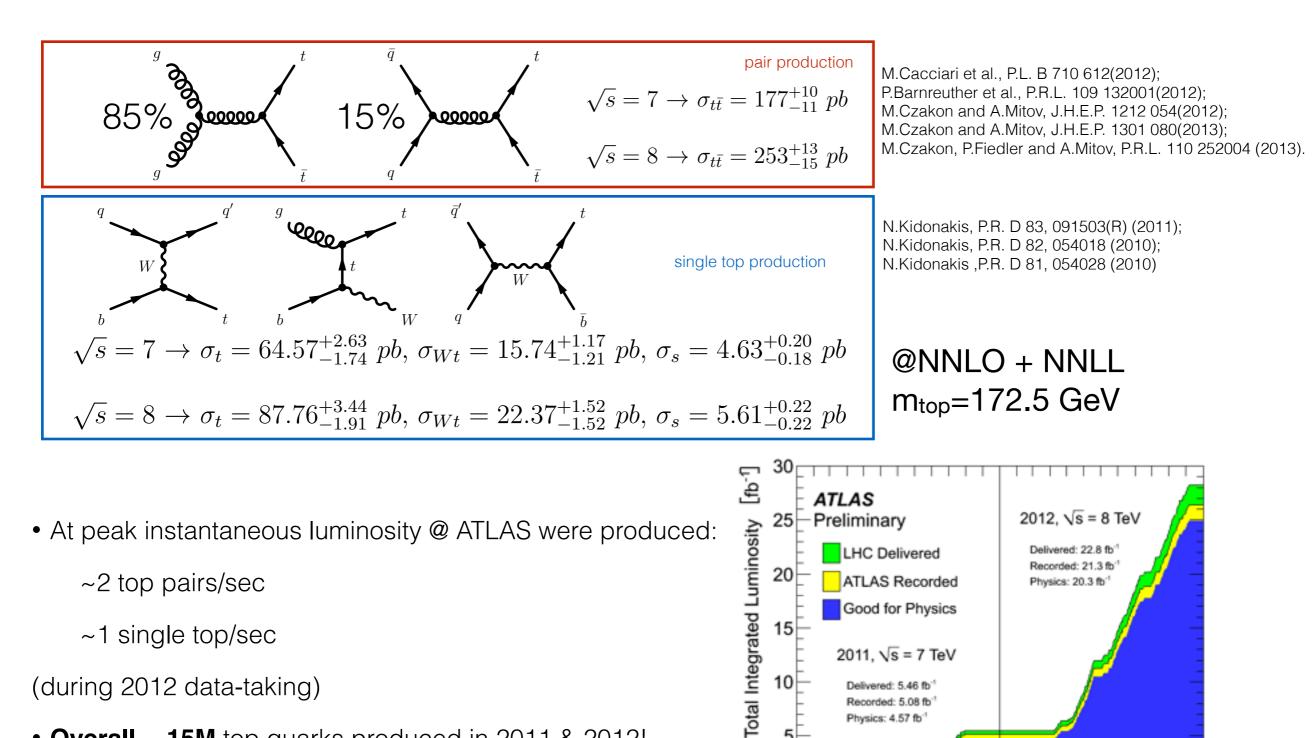
Largest mass → Largest coupling to SM Higgs



• Decays before hadronization: $\tau \sim 10^{-25}$ s

(spin information passes to the decay products)

• Dominant decay to $t \rightarrow Wb$:


 $(|V_{tb}| > 0.999 \implies BR(t \rightarrow Wb) \sim 1)$

- Test Standard Model (SM) predictions
- Search for new Physics

Top production at the LHC

Jan

• Overall ~ 15M top quarks produced in 2011 & 2012!

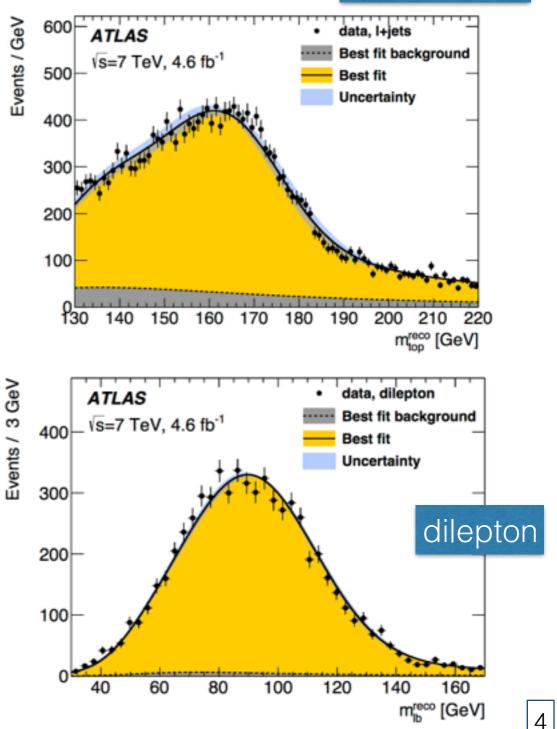
JUI

ADI

OCt.

Month in Year

Top mass


 Direct measurements @ 7 TeV (4.6 fb⁻¹) [arXiv:1503.05427]

 $t\bar{t} \to \ell + \text{jets and } t\bar{t} \to \ell^+\ell^- + \text{jets}$

- The **lepton+jets analysis** implements a **3D template** fit to simultaneously determine m_{top} along with a global jet energy scale factor (JSF) and a relative b-to-light quark jet energy scale factor (bJSF), to mitigate the JES and bJES systematic uncertainties.
 - Observables: m_t, m_W and $R_{bq}^{\text{reco}} = \frac{p_T^{b_{\text{had}}} + p_T^{b_{\text{lep}}}}{p_T^{W_{j1}} + p_T^{W_{j2}}}$
 - $m_t = 172.33 \pm 0.75(\text{stat} + \text{JSF} + \text{bJSF}) \pm 1.02(\text{syst}) \text{ GeV}$
- The **dilepton analysis** uses a 1-dimensional template method relying on the m_{lb} observable.
 - $m_t = 173.79 \pm 0.54 (\text{stat}) \pm 1.30 (\text{syst}) \text{ GeV}$

Main systematics:

- I+jets: JES, btag
- dilep: JES, bJES

lepton + jets

Top pole mass

- Top-quark mass derived from the kinematical reconstruction does not correspond to a well-defined renormalisation scheme leading to a theoretical uncertainty in its interpretation
- Alternative methods extract top quark mass in a well-defined scheme

channel @ 7+8 TeV [Eur.Phys.J. C74 (2014) 10, 3109] $\sigma_{t\bar{t}}^{theo}(m_t^{\text{ref}}) = \sigma(m_t^{\text{ref}}) \left(\frac{m_t^{\text{ref}}}{m_t^{\text{pole}}}\right)^4 \left(1 + a_1 x + a_2 x^2\right)$ Cross-section [pb] 350 W 2008 NNLO ATLAS MSTW 2008 NNLO uncertainty CT10 NNLO CT10 NNLO uncertainty NPDF2.3 NNLO 300 NPDF2.3 NNLO uncertainty = 7 TeV, 4.6 fb⁻¹ = 8 TeV, 20.3 fb⁻¹} vs m 8 TeV 250 200 150 164 166 168 170 172 174 176 178 180 182 m^{pole} [GeV]

From precision measurements of $\sigma_{t\bar{t}}$ in eµ

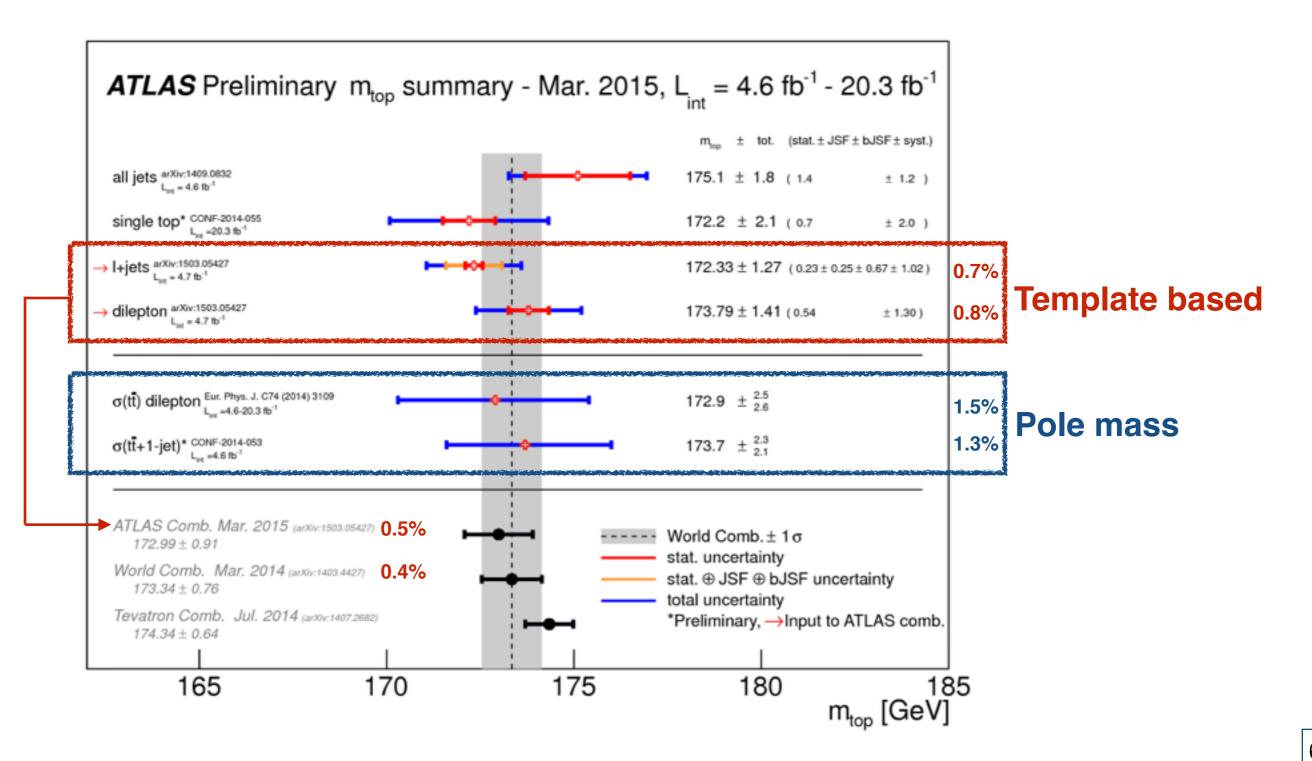
Main systematics: tī modelling, PDFs, knowledge of the integrated luminosities and LHC beam energy.

 $m_t^{\text{pole}} = 172.9^{+2.5}_{-2.6}$

From tt +1jet events in single lepton channel @ 7 TeV

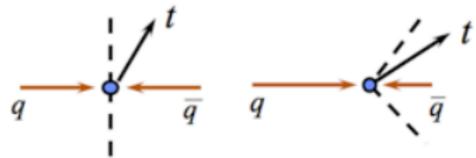
[ATLAS-CONF-2014-053]

Extracted from differential cross-section as a function of ρ_s

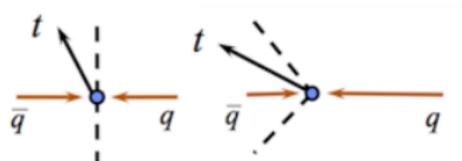

$$\mathcal{R}(m_t^{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1j}} \frac{d\sigma_{t\bar{t}+1j}}{d\rho_s} (m_t^{\text{pole}} \rho_s), \ \rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}j}}}, \ m_0 = 170 \text{ GeV}$$

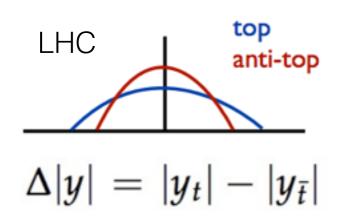
$$\int_{0}^{\infty} \int_{0}^{4.5} \frac{45}{\sqrt{s_{t\bar{t}}}} \int_{1}^{\sqrt{s_{t\bar{t}}}} \frac{1}{\sqrt{s_{t\bar{t}}}} \int_{1}^{\sqrt{s_{t\bar{t}}$$

 $m_t^{\text{pole}} = 173.7 \pm 1.5 \text{(stat.)} \pm 1.4 \text{(syst.)}_{-0.5}^{+1.0} \text{(theo.)} \text{ GeV}$


5

Top mass comparison




tt charge asymmetry

- At the LHC the dominant mechanism for the tt
 production is the gluon fusion (~85 %)
 which is charge symmetric
- The tt production via qq or qg (~15 %) is charge asymmetric and small in most of the phase space
- Valence quarks on average have large momentum than anti-quarks → rapidity distribution of top quark is wider than anti-top
- In the lab frame, top quarks preferentially emitted in the forward/backward directions while anti-top quarks are produced more centrally

cms rest frame LAB frame at the LHC

Observable:

$$A_{\rm C}^{t\bar{t}} = \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)}$$

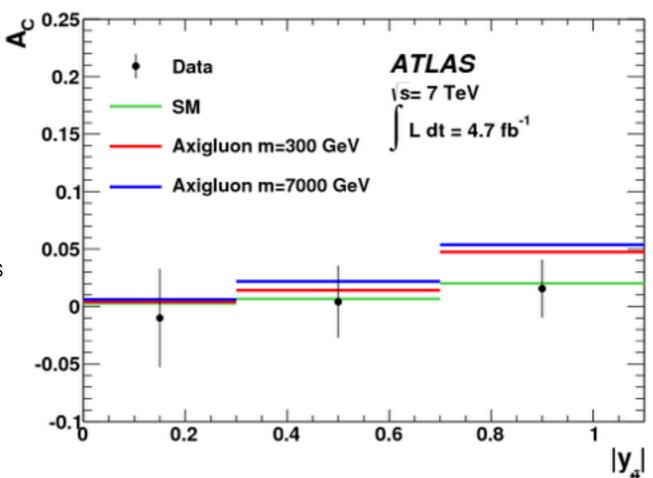
ATLAS charge asymmetry (1)

Single lepton channel @ 7 TeV

[JHEP02(2014)107]

- A kinematic fit based on a likelihood approach is used to reconstruct tt system
- Inclusive result: $A_C^{t\bar{t}} = 0.006 \pm 0.010$

SM: 0.0123 ± 0.0005 (NLO+EW) [PRD 86, 034026 (2012)]


- Differential measurements: m(tt
), p_T(tt
), y(tt
)
- Differential distributions can point to new physics

Main systematics:

٠

Jet energy scale and resolution

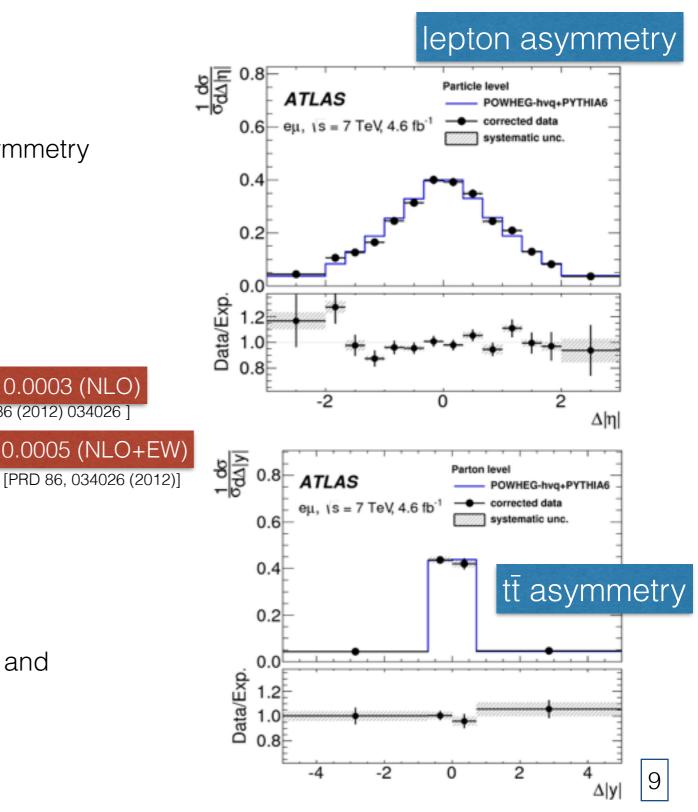
Lepton energy scale and resolution

ATLAS charge asymmetry (2)

Dilepton channel @ 7 TeV

[arXiv:1501.07383]

- Can measure lepton and top quark based asymmetry
- The neutrino weighting technique is used to reconstruct the kinematics
- Inclusive result:


٠

 $A_C^{\ell\ell} = 0.024 \pm 0.015 \text{(stat.)} \pm 0.009 \text{(syst.)} \quad \text{SM: } 0.0070 \pm 0.0003 \text{(NLO)} \text{[Phys.Rev. D86 (2012) 034026]}$ $A_C^{t\bar{t}} = 0.006 \pm 0.025 \text{(stat.)} \pm 0.017 \text{(syst.)} \quad \text{SM: } 0.0123 \pm 0.0005 \text{(NLO+EW)}$

Main systematics:

A_C(II): lepton reconstruction

 $A_C(t\overline{t})$: lepton reconstruction, jet reconstruction and E_Tmiss

Spin Correlation

- Top quark pairs produced by the strong interaction are unpolarised (LO), but have correlated spins
- Since top quark decays before hadronisation → spins are unaffected by strong interactions
- Assuming SM decay of top quarks we can measure the spin correlation in tt → Probing new physics at the production.
- Spin information influences angular distributions of decay products
 - Can use this to determine the degree of correlation of the $\ensuremath{t\bar{t}}$ spins

Helicity basis: Vector defined along direction of top quark in $t\bar{t}$ rest frame

Degree of spin correlation can be then \overline{p} defined, where \uparrow and \downarrow denote spins measured with respect to the basis

$$A = \frac{N_{like} - N_{unlike}}{N_{like} + N_{unlike}} = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}}$$

$$A_{measured} = A_{SM} \times f_{SM}, \quad A_{SM} = 0.31$$

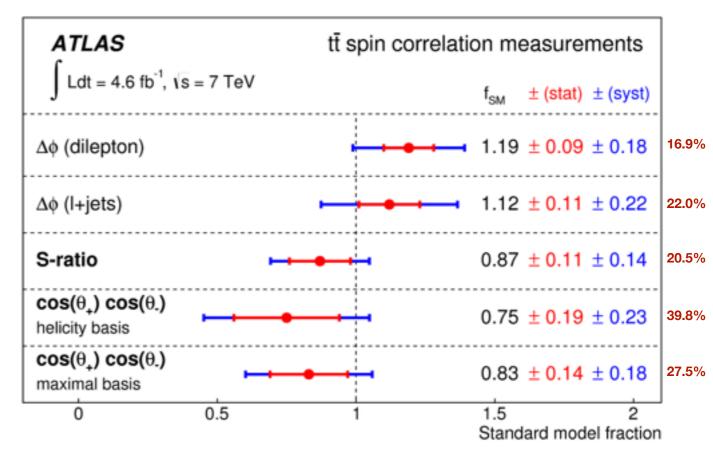
$$f_{SM} = 0 \rightarrow no \ correlation$$

$$f_{SM} = 1 \rightarrow correlation \rightarrow SM \ prediction$$

ATLAS spin correlation (1)

Dilepton and single lepton @ 7 TeV (4.6 fb⁻¹)

[Phys. Rev. D. 90, 112016 (2014)]

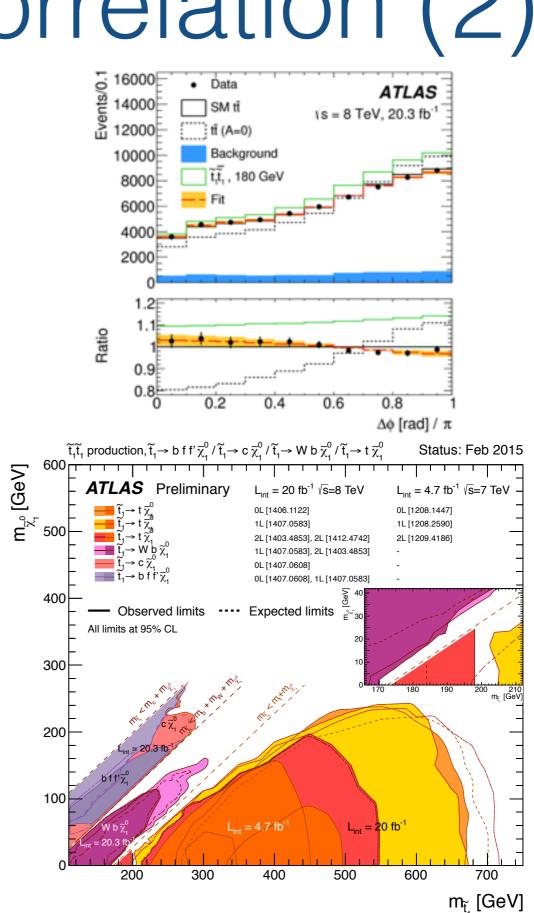

Several observables sensitive to different sources of new physics in $t\bar{t}$ production are used to extract the spin correlation strength:

- Δφ between the two leptons lepton and jets (lab frame)
- $\cos(\theta_{+})\cos(\theta_{-})$ in the helicity and maximal bases
- "S ratio"

$$S = \frac{(|\mathcal{M}|_{\rm RR}^2 + |\mathcal{M}|_{\rm LL}^2)_{\rm corr}}{(|\mathcal{M}|_{\rm RR}^2 + |\mathcal{M}|_{\rm LL}^2)_{\rm uncorr}} = \frac{m_t^2 \{ (t \cdot \ell^+)(t \cdot \ell^-) + (\bar{t} \cdot \ell^+)(\bar{t} \cdot \ell^-) - m_t^2(\ell^+ \cdot \ell^-) \}}{(t \cdot \ell^+)(\bar{t} \cdot \ell^-)(t \cdot \bar{t})}$$

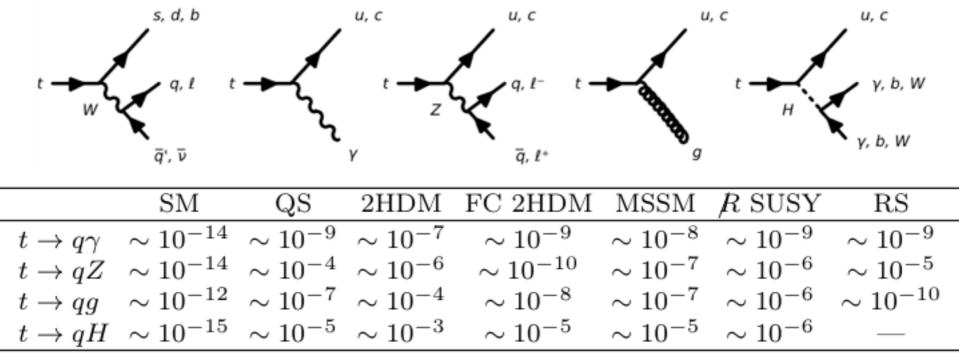
• **Main systematics:** JES, JER, Renormalization/ factorization scale

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos(\theta_+)d\cos(\theta_-)} = \frac{1}{4} (1 + A\alpha_+\alpha_-\cos(\theta_+)\cos(\theta_-))$$

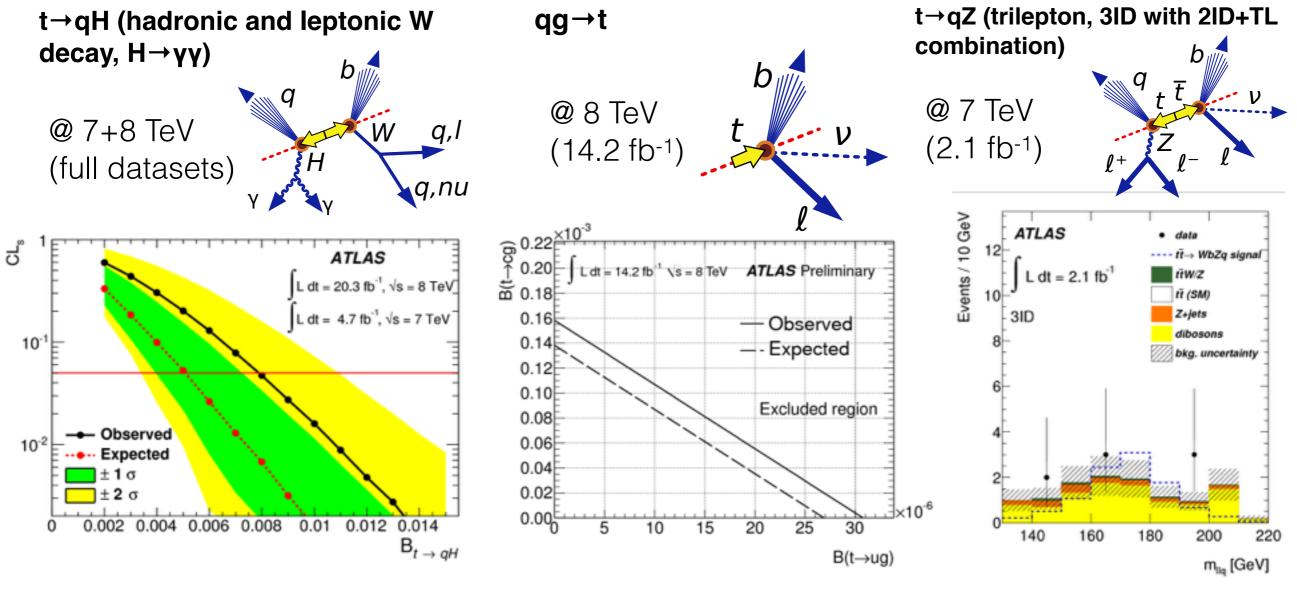


ATLAS spin correlation (2)

Dilepton @ 8 TeV (20.3 fb⁻¹)


[Phys. Rev. Lett. 114, 142001 (2015)]

- Extract the spin correlation strength from $\Delta \phi$ between the two leptons:
- f_{SM}=1.20± 0.05 (stat) ± 0.13 (syst)
- Since stops are scalars, if produced in pairs they would have no spin correlation (f_{SM}=0).
- If the top squarks decay to tops + very light neutralinos the Δφ distribution would look similar to uncorrelated tt
- Assuming 100% BR($\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$) and the production of predominantly right-handed top quarks, top squark masses between m_{top} and 191 GeV can be excluded.
- **Main systematics:** Parton shower and fragmentation, ISR/FSR



FCNC top decays

- Flavour-changing neutral current (FCNC) transition is an interaction process where a fermion undergoes the change of flavour without changing its electric charge;
- FCNC amplitudes at tree level are forbidden by the Glashow-Iliopoulos-Maiani (GIM) mechanism in the SM;
- However, GIM-highly suppressed FCNC transitions are possible in the SM in the higher orders via penguin and box diagrams;
- Some extensions of the SM could introduce FCNC decays at tree level including new particles making flavour violation a good flag of new physics.

ATLAS top FCNC decay measurements

BR(t→cH) = 0.79% (0.51% expected)

Main systematics: photon ID, JES, b-tag

BR(t → ug) < 3.1×10^{-5} BR(t → cg) < 1.6×10^{-4}

Main systematics: b-tag, met, background modeling

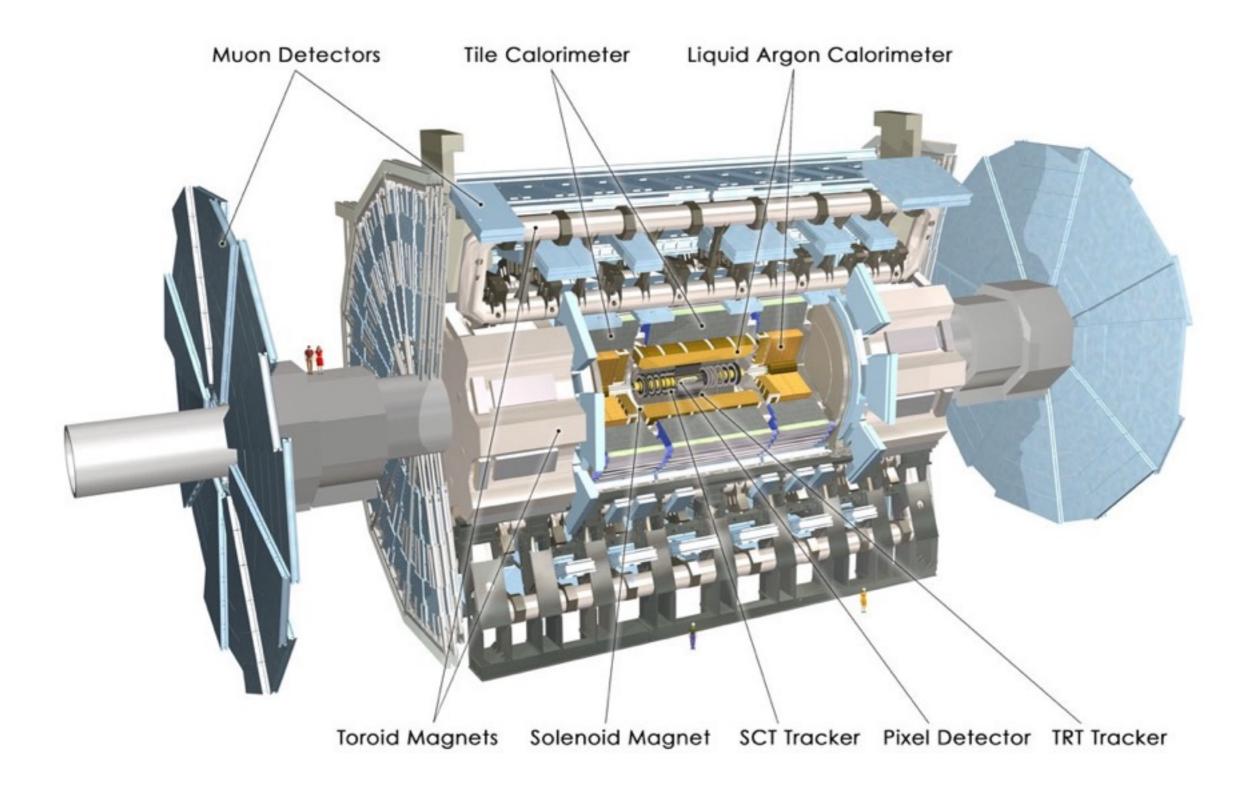
[ATLAS-CONF-2013-063]

 $BR(t \rightarrow qZ) < 0.73\%$

Main systematics:

- 3ID: ZZ and WZ simulation modelling
- 2ID+TL: fake-TL estimation

[JHEP 06 (2014) 008]

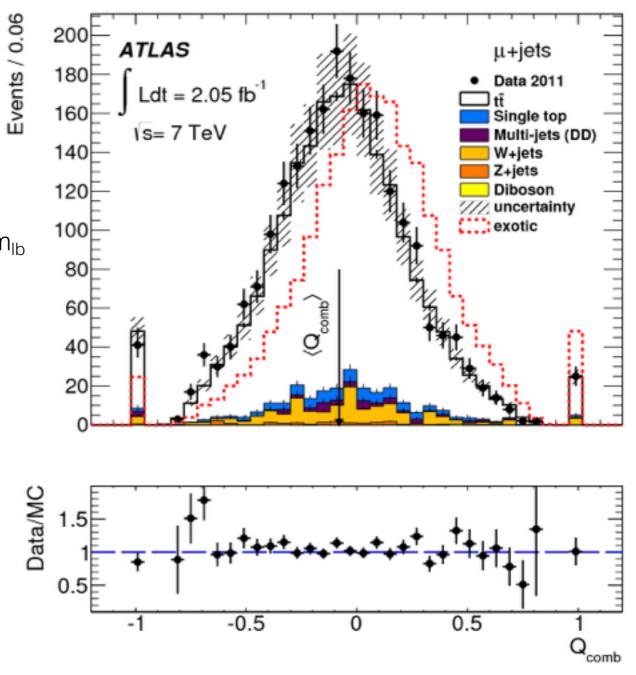

Conclusions

- Since the beginning of LHC era many precision measurements of top quark properties have been done, most of them allowing to constrain possible new physics contributions;
- Top quark studies with the ATLAS detector well under way ⇒ now addressing Precision Top Quark Measurements!
- Top quark mass known with precision < 1 GeV!
- A variety of top quark properties in tt production and decay have been measured and presented
- All results in good agreement with SM \Rightarrow no new physics seen in top quark physics:
 - Many measurements are dominated by systematic uncertainties
- A few 8 TeV analysis in the pipeline
- Study of the systematics (e.g. JES, tt modelling) will be crucial for Run-2
- Also, more statistic will allow more differential measurements.

for more detailed information check ATLAS top quark physics results website: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>

Backup Slides

ATLAS detector


Top Quark Charge

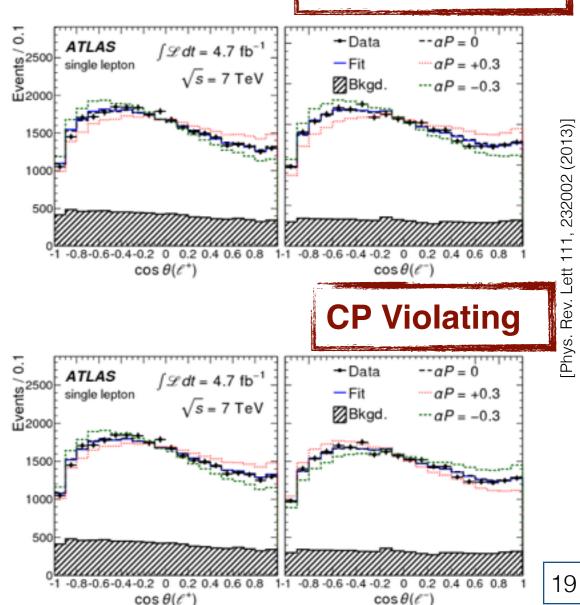
 $t\bar{t}$ → I+jets analysis @ 7 TeV (2.05 fb⁻¹) [JHEP11 (2013) 031]

- W charge from lepton, b-jet charge from weighted sum of associated tracks
- Lepton and b-jet paired using invariant mass, m_{lb}

 $Q_{\rm comb} = Q_{\rm b-jet}^{\ell} \cdot Q_{\ell}$

- Q = 0.64 ± 0.02 (stat) ± 0.08 (syst)
- Confirmation of SM
- Exclude models that propose -4/3e at 8σ
- Main systematics: JES, parton shower

ATLAS measurement of Top quark polarization in tt


 $\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos(\theta_i) d \cos(\theta_j)} = \frac{1}{4} \left[P_{\alpha_i} \cos(\theta_i) + P_{\alpha_j} \cos(\theta_j) + A \alpha_i \alpha_j \cos(\theta_i) \cos(\theta_j) \right]$

- $P_{SM} = 0.003 \pm 0.001$ [PRL 111 (2013) 232002]
- 1+jets (w/ b-tagging) and dilepton (wo/ b-tagging) @ 4.6 fb of 7 TeV
- Template fit to reconstruct $\cos(\theta)$
- Two hypotheses tested:
 - CP conserving (CPC): top and anti-top have the same P

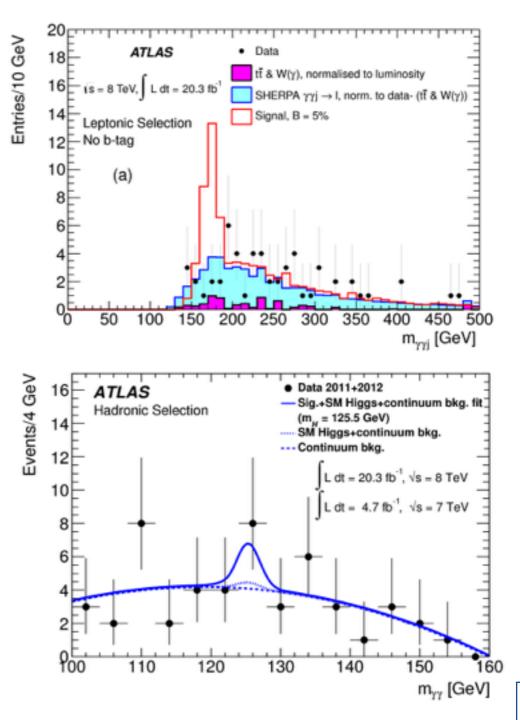
 $\alpha_l P_{CPC} = -0.035 \pm 0.014 (\text{stat.}) \pm 0.037 (\text{syst.})$

- CP violating (CPV): top and anti-top have opposite P $\alpha_l P_{CPV} = 0.020 \pm 0.016 (\text{stat.})^{+0.013}_{-0.017} (\text{syst.})$

- No deviation from the SM prediction of negligible polarization is observed for either the CP conserving or maximally CP violating scenario!
- Main systematics: Jet Reconstruction, tt modeling

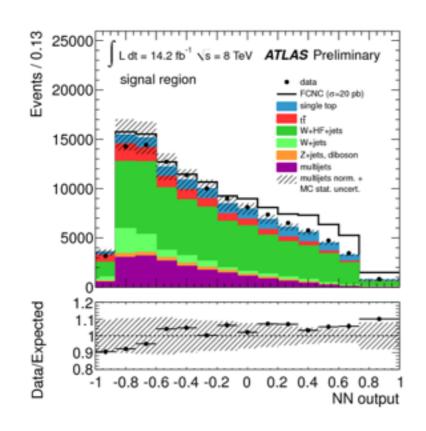
CP Conserving

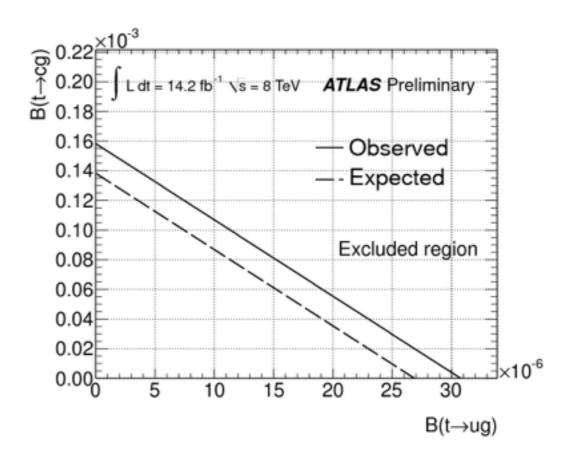
@ 7+8 TeV (full datasets)

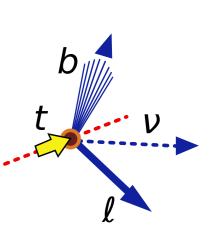

q,

g,nu

a

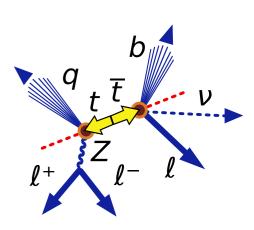

FCNC t → qF


- \geq 2 photons (p_T(γ 1) > 40 GeV, p_T(γ 2) > 30 GeV)
- two topologies searched for:
- hadronic
 - =0 leptons
 - =4 jets (1 b-tagged)
 - 156 GeV < m(top FCNC) < 191 GeV
 - 130 GeV < m(top SM) < 210 GeV
- leptonic (=1 lepton)
 - m_T(W) > 30 GeV
 - ≥ 2 jets (1 b-tagged)
 - 156 GeV < m(top FCNC) < 191 GeV
 - 135 GeV < m(top SM) < 205 GeV
- maximum likelihood fit is performed

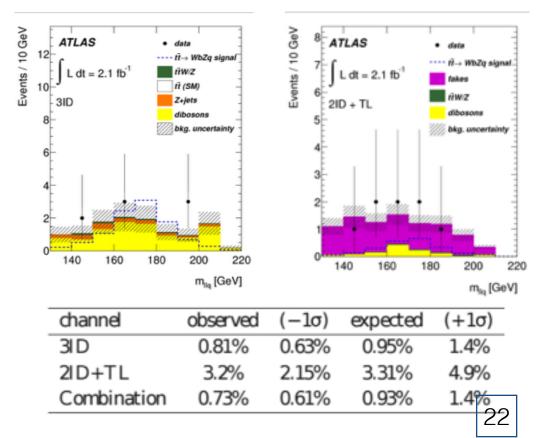


FCNC gq -

- $t\bar{t}$ production with $t \rightarrow qg$ decay dificult to distinguish from multijet production
- search for single top production via FCNC (strong sector)
- = 1 lepton (>25 GeV), E_T miss >30 GeV
- 1 jet (=1 b-tagged), m_T(W) > 50 GeV
- MVA method (neural-network with 13 variables) used to improve analysis



@ 8 TeV (14.2 fb⁻¹)


@ 7 TeV (2.1 fb⁻¹)

FCNC t \rightarrow qZ

- two orthogonal analyses:
 - 3ID: 3 fully identified leptons (e, μ); main background from ZZ and WZ production
 - p_T(l₁) < 25 GeV, pT(l_{2,3}) < 20 GeV,
 - 2ID+TL: 2 fully identified leptons (e, μ) and the third one is allowed to be a high quality inner detector track (TL); main background from jets faking TL
 - $p_T(ID) < 20 \text{ GeV}, p_T(TL) < 25 \text{ GeV},$
- p_T(μ) < 150 GeV
- leptons from same vertex
- 2 leptons with same flavour and opposite charges ($|m_{PDG}^{}-m_{_{||}}|<15$ GeV)
- \geq 2 jets; p_T > 25 GeV; $|n_{i1,i2}|$ < 2.5 (1 b-tagged in 2ID+TL)
- E_Tmiss > 20 GeV
- [m(top FCNC,top SM) 172.5 GeV] < 40 GeV
- |m(W) 80.4 GeV| < 30 GeV

	3ID			2ID+TL		
ZZ and WZ	9.5	±	4.4	1.0	±	0.5 0.6
ttW and ttZ	0.51	±	0.14	0.25	±	0.05
tť, WW	0.07	±	0.02			
Z+jets	1.7	±	0.7	76	+	2.2
Single top	0.01	±	0.01	7.0	Ŧ	2.2
2+3 fake leptons	0.0	±	8.2			
Expected background	11.8	±	4.4	8.9	±	2.3
Data	8			8		
Signal efficiency	(0.205	±	0.024)%	(0.045	±	0.007)%

