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Unitarity and Thermal Dark Matter

I Heavy Dark Matter needs to annihilate efficiently
I Annihilation cross section bounded by unitarity

Griest and Kamionkowski, 1990
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Vsoft ∏ A123 „1„2„3

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄
A2

123
s ≠ m�2

3

AŸ �1 �2 �3 (6)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(7)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

?

Unitarity

Constraints on ratios of scales

13 / 50

Unitarity with Dimensionful Couplings

Vsoft ∏ A123 „1„2„3

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄ (6)
AŸ �1 �2 �3 (7)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(8)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

H,W ,Z J/�, b,⇤,�,P,N,K fi µ e �, �e , �µ b t (1)

0 1GeV 103 GeV 106 GeV 109 GeV 1012 GeV (2)
1015 GeV 1018 GeV 1021 GeV 100 GeV (3)

Ã g2 �̃0 SM 1
2 |tE ≠ tTL| (4)

dmin xTL a� =
dmin
|xTL| (5)

A⁄
A2

123
s ≠ m�2

3

AŸ �1 �2 �3 (6)

µ +
Ÿ2A2

Ÿ

s ≠ m2
S

(7)

EW
? }

. . . ⁄2 ⁄ Ÿ2 Ÿ

H̃0

H̃± S
W± H̃0

1 , H̃0
2 S̃Ô

2Ÿ

⁄
µ

?

Unitarity

Constraints on ratios of scales

13 / 50

I Generic Unitarity Bound : 120TeV for λ non perturbative
I Can we identify lower characteristic scales using

unitarity?
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Perturbative Unitarity

Given a scattering matrix

S = 1 + iT

Optical theorem

S†S = I ⇒ −i(T − T †) = T †T

Use Partial Wave Decomposition

T̃ J
ij = λ

1/4
i λ

1/4
f

32πs

∫ 1

−1
TijPJ(cos θ)d cos θ

We find
ImT̃ii = |T̃ii |2 ⇒ |ReT̃ii | <

1
2
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Unitarity in the Complex Plane

Argand diagram

Colliders - SUSY Phenomenology Unitarity constraints on trilinear couplings in the MSSM
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(s) (t) (u)

Fig. 1. Scalar 2→2 tree level scattering diagrams.

The PJ are the Legendre polynomials. The factor 1/2
is a standard convention and leads to the factor 1/2 in

Eq. (1). In this normalization, extra factors of 1/
√

2
have to be included for each state with two identi-
cal particles. Higher partial waves usually give smaller
amplitudes, so only J =0, 1 amplitudes have to be con-
sidered in practice. The unitarity condition now reads

1

2i

(
T J

fi − T J∗
if

) ∼=
∑

h

T J∗
hf T J

hi . (1)

The sum is taken over intermediate states. Restriction
to only relevant and two-particle scalar states in the
sum slightly underestimates the right-hand side and
leads to conservative bounds.

The ’true’, physical matrix T J
fi is normal and can

therefore be diagonalized. The same holds for the Born
amplitude, which we use instead. The diagonalized ma-
trix T̃ J

fi and thus the eigenvalues satisfy

Im T̃ J
ii

∼= |T̃ J
ii |2 . (2)

The ’true’ eigenvalues (for any given energy
√

s) must
lie on the circle (called Argand diagram) given by (2):

y=x2+ y2 for x =Re T̃ J
ii and y =Im T̃ J

ii which implies
|x| ≤ 1/2. For the Born approximation, the phases of
the fields can be chosen such that all 2→2 amplitudes
are (nearly) real, if CP (nearly) holds. Approximat-
ing x by the corresponding Born amplitude yields the
desired unitarity bound. The circle restricts |x|≤1/2,
which is the unitarity bound generally used in the lit-
erature. A Born value of x= 1/2, y=0 needs at least1

a correction of
√

2−1≈ 41% to become unitary. Such
large corrections indicate a breakdown of perturbation
theory. In addition to the perturbative unitarity bound
of |x| ≤ 1/2 we therefore also consider |x| ≤ 1/6 as a
condition for which the Born amplitude remains suffi-
ciently small to trust perturbation theory.

2.1 A toy model

Figure 1 shows generic tree level Feynman graphs for
ϕ1ϕ2 → ϕ3ϕ4 scattering with trilinear couplings of
(possibly different) scalar fields ϕl (l=1,.., 5). The cor-
responding amplitudes are A2/(q2− m2

5), where q2 =
s, t, u is one of the Mandelstam variables, and A stands
for the trilinear couplings. t and u depend on

√
s, cos θ,

and the masses ml of the exterior particles. Project-
ing onto partial waves, the amplitude for J = 0 has a
structure roughly like:

T J=0
fi ∼ 1

16π

λ
1/4
f λ

1/4
i

s

A2

max{s, m2
5}

, (3)

1 ’At least’ means that this would be the minimal case
where the correction directly hits the nearest circle point.

where a factor of 2 has been assumed to account for the
partial wave projection. The second factor is smaller
than 1 and the third factor becomes large if both the
scattering energy

√
s and the mass of the internal par-

ticle are small compared to the couplings A. Highest
values are usually found for energies near the kine-
matic threshold, i.e. at energies where the model should
work properly, in contrast to weak boson scattering in
the SM [2,3].

2.2 Handling poles

Clearly the Born amplitudes are not sufficient to de-
scribe scattering processes where intermediate parti-
cles become on-shell. In the s channel in Figure 1 this
happens when

√
s=m5. Born amplitudes only will be

used for unitarity considerations and s-channel poles
are cut out by the condition

|√s − m|2 > a m Γ (Q=b m) . (4)

Here a, b ! 1 are (suitably chosen) constants and the
’running width’ Γ (Q) of the internal particle ϕ at en-
ergy Q is approximated by the decay width via replac-
ing its mass m with the energy Q in the phase space
factor. This condition (4) has to be fulfilled for all in-
ternal particles appearing in the s channel. If this is
not the case, the amplitude is set to zero, as well as
the irreducible part of T J=0

fi this process is in, because
of possible destructive interference of matrix elements.

A width cannot be included in the Born propagator
for two reasons: First, Tfi is no longer diagonalizable
(at this level of approximation). Second, our Γ (

√
s)

grows (linearly for large
√

s) with
√

s, which is not a
good approximation to the propagator as

√
s'm.

The internal particle in the u channel of Figure
1 can also become on-shell for certain combinations
of masses. This occurs e.g. if ϕ1 can decay into ϕ4, ϕ5

and ϕ2, ϕ5 can fuse to ϕ3 (MSSM example: t̃2t̃1 → t̃2t̃1
with u channel h0 exchange when mt̃2 >mt̃1+mh). One
obtains another possibility by switching labels 1 ↔ 2
and 3 ↔ 4 or two similar conditions for the t channel
by exchange of 3↔4. The first case has the condition:

c m1 ≥ m4 + m5 ∧ m2 + m5 ≤ c m3 . (5)

with some suitably chosen constant c ! 1. Amplitudes
where a condition like in (5) is fulfilled cannot be com-
puted because the internal particle becomes on-shell
for some value of the scattering angle. The constants
a, b, c are chosen larger than one because in proximity
of a pole one encounters unphysical enhancements of
the amplitude in the pure Born approximation. Still,
some enhancement can appear in special cases.

If some Born matrix elements cannot be calculated
because of a t or u channel pole, the tree level matrix
T J

fi cannot be diagonalized. The solution is a partial
diagonalization. Assuming time reflection invariance,
we write the left-hand side of (1) as Im T J

fi. Define the

set B of all kinematically accessible states at given
√

s
from an irreducible part of T J

fi and the set C ⊂B such
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Unitarity is restored by
loop corrections!
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Unitarity and Loop Corrections
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Fig. 1. Scalar 2→2 tree level scattering diagrams.

The PJ are the Legendre polynomials. The factor 1/2
is a standard convention and leads to the factor 1/2 in

Eq. (1). In this normalization, extra factors of 1/
√

2
have to be included for each state with two identi-
cal particles. Higher partial waves usually give smaller
amplitudes, so only J =0, 1 amplitudes have to be con-
sidered in practice. The unitarity condition now reads

1

2i

(
T J

fi − T J∗
if

) ∼=
∑

h

T J∗
hf T J

hi . (1)

The sum is taken over intermediate states. Restriction
to only relevant and two-particle scalar states in the
sum slightly underestimates the right-hand side and
leads to conservative bounds.

The ’true’, physical matrix T J
fi is normal and can

therefore be diagonalized. The same holds for the Born
amplitude, which we use instead. The diagonalized ma-
trix T̃ J

fi and thus the eigenvalues satisfy

Im T̃ J
ii

∼= |T̃ J
ii |2 . (2)

The ’true’ eigenvalues (for any given energy
√

s) must
lie on the circle (called Argand diagram) given by (2):

y=x2+ y2 for x =Re T̃ J
ii and y =Im T̃ J

ii which implies
|x| ≤ 1/2. For the Born approximation, the phases of
the fields can be chosen such that all 2→2 amplitudes
are (nearly) real, if CP (nearly) holds. Approximat-
ing x by the corresponding Born amplitude yields the
desired unitarity bound. The circle restricts |x|≤1/2,
which is the unitarity bound generally used in the lit-
erature. A Born value of x= 1/2, y=0 needs at least1

a correction of
√

2−1≈ 41% to become unitary. Such
large corrections indicate a breakdown of perturbation
theory. In addition to the perturbative unitarity bound
of |x| ≤ 1/2 we therefore also consider |x| ≤ 1/6 as a
condition for which the Born amplitude remains suffi-
ciently small to trust perturbation theory.

2.1 A toy model

Figure 1 shows generic tree level Feynman graphs for
ϕ1ϕ2 → ϕ3ϕ4 scattering with trilinear couplings of
(possibly different) scalar fields ϕl (l=1,.., 5). The cor-
responding amplitudes are A2/(q2− m2

5), where q2 =
s, t, u is one of the Mandelstam variables, and A stands
for the trilinear couplings. t and u depend on

√
s, cos θ,

and the masses ml of the exterior particles. Project-
ing onto partial waves, the amplitude for J = 0 has a
structure roughly like:

T J=0
fi ∼ 1

16π

λ
1/4
f λ

1/4
i

s

A2

max{s, m2
5}

, (3)

1 ’At least’ means that this would be the minimal case
where the correction directly hits the nearest circle point.

where a factor of 2 has been assumed to account for the
partial wave projection. The second factor is smaller
than 1 and the third factor becomes large if both the
scattering energy

√
s and the mass of the internal par-

ticle are small compared to the couplings A. Highest
values are usually found for energies near the kine-
matic threshold, i.e. at energies where the model should
work properly, in contrast to weak boson scattering in
the SM [2,3].

2.2 Handling poles

Clearly the Born amplitudes are not sufficient to de-
scribe scattering processes where intermediate parti-
cles become on-shell. In the s channel in Figure 1 this
happens when

√
s=m5. Born amplitudes only will be

used for unitarity considerations and s-channel poles
are cut out by the condition

|√s − m|2 > a m Γ (Q=b m) . (4)

Here a, b ! 1 are (suitably chosen) constants and the
’running width’ Γ (Q) of the internal particle ϕ at en-
ergy Q is approximated by the decay width via replac-
ing its mass m with the energy Q in the phase space
factor. This condition (4) has to be fulfilled for all in-
ternal particles appearing in the s channel. If this is
not the case, the amplitude is set to zero, as well as
the irreducible part of T J=0

fi this process is in, because
of possible destructive interference of matrix elements.

A width cannot be included in the Born propagator
for two reasons: First, Tfi is no longer diagonalizable
(at this level of approximation). Second, our Γ (

√
s)

grows (linearly for large
√

s) with
√

s, which is not a
good approximation to the propagator as

√
s'm.

The internal particle in the u channel of Figure
1 can also become on-shell for certain combinations
of masses. This occurs e.g. if ϕ1 can decay into ϕ4, ϕ5

and ϕ2, ϕ5 can fuse to ϕ3 (MSSM example: t̃2t̃1 → t̃2t̃1
with u channel h0 exchange when mt̃2 >mt̃1+mh). One
obtains another possibility by switching labels 1 ↔ 2
and 3 ↔ 4 or two similar conditions for the t channel
by exchange of 3↔4. The first case has the condition:

c m1 ≥ m4 + m5 ∧ m2 + m5 ≤ c m3 . (5)

with some suitably chosen constant c ! 1. Amplitudes
where a condition like in (5) is fulfilled cannot be com-
puted because the internal particle becomes on-shell
for some value of the scattering angle. The constants
a, b, c are chosen larger than one because in proximity
of a pole one encounters unphysical enhancements of
the amplitude in the pure Born approximation. Still,
some enhancement can appear in special cases.

If some Born matrix elements cannot be calculated
because of a t or u channel pole, the tree level matrix
T J

fi cannot be diagonalized. The solution is a partial
diagonalization. Assuming time reflection invariance,
we write the left-hand side of (1) as ImT J

fi. Define the

set B of all kinematically accessible states at given
√

s
from an irreducible part of T J

fi and the set C ⊂B such
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Perturbativity breakdown

I For large T̃ii restoring unitarity violates perturbativity!
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Schuessler and Zeppenfeld [arXiv:07105175, Schuessler thesis (2005)]

I New perturbativity bounds on Dark Matter models
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Application: Squark-Dark Matter simplified model

L ⊃ 1
2Mχχ̄χ + 1

2Mũ
2ũ∗u + λdarkũ∗χ̄PRu

I Example: Majorana fermionic Dark Matter
DiFranzo, Nagao, Rajaraman, Tait [arXiv:1308.2679]

I MFV – Consider one degenerate flavor triplet

ũR = (ũR , c̃R , t̃R)

I Three parameters – Two mass scales

λdark, Mχ, Mũ
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Squark-Dark Matter – Strategy

I Same diagrams for Unitarity, Direct Detection and
Relic Density constraints

χ

q

q̄

q̃∗

χ̄

χ

qq̃∗

q̄

χ̄

I Unitarity ⇒ λdark . 3.5
I Negative interference ⇒ suppressed annihilation rate
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The Perturbative Sector
I Suppressed annihilation cross section

I 10 TeV bound on Squark and Dark Matter masses!
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Squark Portal at 100 TeV – Exclusion reach
Snowmass 100 TeV search recasted for large λdark
Cohen, Golling, Hance, Henrichs, Howe, Loyal, Padhi, Wacker [arXiv:1311.6480]
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Consequences of breaking perturbativity
The Dark Matter candidate forms bound states

Elementary DM annihilation Bound state decay

Completely different physics in the dark sector!

I Different depletion mechanism
I Different collider/indirect/DD phenomenology

Find new energy scales by considering bound states?
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Massive Mediators – Gauge boson exchange

Exchange of a massive Z ′ – Vector and axial-vector interaction

L ⊃ g ′χ̄γµ (λ0 + iλ5γ5)χ Zµ

I Yukawa Potential – Spin-spin interaction

V (r) = e−mZ ′ r

4πr
(
λ2

0 − λ2
5~σ1.~σ2

)

I Short range interaction
I Binding energy depends on the mediator mass
I Set a new upper bound on the Dark Matter mass using the

binding energy
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Finding Characteristic Energy Scales – Yukawa potential
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I For |∆| � Tfreeze (blue), Dark Matter dynamics is dominated
by bound states formation!
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Summary and Outlook

I Perturbative Unitarity coupled with relic density sets powerful
constraints on the scales of thermal Dark Matter models

I Combining unitarity constraints with current and future
experimental results will allow to "corner" weakly interacting
Dark Matter for large classes of models

I The unitarity bound corresponds to a fundamental change in
the Dark Matter dynamics due to the formation of bound states

I For portals, the bound state dynamics can be fully derived
⇒ Compute a physically motivated bound!

I New refined bounds can be computed for our models.
Calculation of the potentials for the Higgs and squark portals
in progress.
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