

SUSY

→ Natural Little Hierarchy

from Radiative Breaking of Peccei-Quinn Symmetry

Hasan SERCE PHENO 2015, MAY 4th

based on the paper: "Natural Little Hierarchy for SUSY from radiative breaking of the Peccei-Quinn symmetry" Phys. Rev. D 91, 015003 (2015) with Kyu Jung Bae and Howard Baer (arxiv:1410.7500).

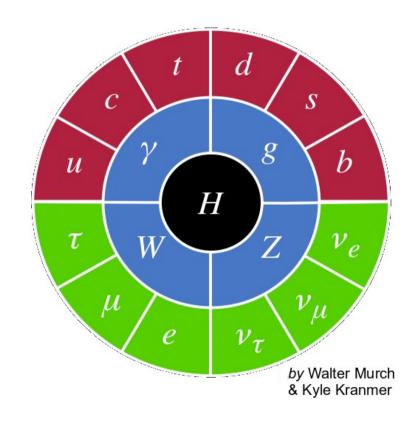
Standard Model and beyond

 $m_h \sim 125 \text{ GeV} \rightarrow \text{SM} \checkmark \& \text{SUSY} \Upsilon$

... but no sign of SUSY at the LHC (yet).

 $m_{sparticles} \ge \text{TeV}$ where $m_{sparticles} \sim m_{3/2}$ (in gravity mediation)

$$\sim m^2_{hidden} / M_P$$


In spite of large m_h and LHC sparticle limits, SUSY can still be *natural*:

$$\frac{m_Z^2}{2} = \frac{(m_{H_d}^2 + \Sigma_d^d) - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{(\tan^2 \beta - 1)} - \mu^2$$
$$\simeq -m_{H_u}^2 - \mu^2$$

- \rightarrow m²_{Hu} driven to \sim (m²_Z)
- \rightarrow μ ~100-200 GeV and m_{sparticles} ~ TeV

apparent Little Hierarchy:

$$\mu \ll m_{3/2} \sim multi-TeV$$
 (LHC bounds)

SUSY μ Problem

 $\mathsf{M}_{_{\mathsf{P}}}$

• the problem:

 μ is supersymmetric so one expects it to be at the order of Planck scale

$$W_{MSSM} \ni \mu H_u H_d \rightarrow \mu \sim M_P$$

But phenomenology ($m_Z^2 \sim -2\mu - 2m_{Hu}^2$) requires $\mu \sim 100$ -200 GeV.

• the solution:

Step 1: Forbid μ via some symmetry.

Step 2: Regenerate μ via coupling to some field which acquires a vev under some symmetry breaking.

10¹²

Solutions to μ Problem:

1. NMSSM

$$W_{\text{NMSSM}} \ni \lambda_S S H_u H_d$$

superfield, S develops vev <S> ~ m $_{3/2}$ $\rightarrow \mu$ ~ $\lambda_{\rm S}$ m $_{3/2}$ problem with gauge singlets (see Supersymmetry Primer by S.P. Martin).

2. Guidice-Masiero

Some (unknown) symmetry forbids μ but Higgs doublets coupled to a hidden sector field, h : $K\ni \lambda h\,H_uH_d/M_P$

field h develops vev <h> ~ m^2_{hidden} where m^2_{hidden} is hidden sector mass parameter with m^2_{hidden} ~ $m_{3/2} \times M_{Pl}$ $\rightarrow \mu$ ~ λ $m_{3/2}$

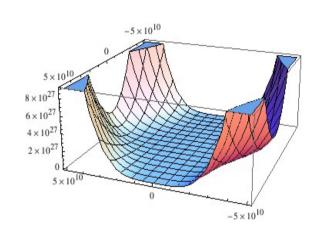
3. Kim-Nilles (SUSY DFSZ)

PQ symmetry forbids μ but Higgs doublets carry PQ charges and coupled to a PQ charged superfield P:

$$W_{DFSZ} = \lambda_H (P^2/M_P) H_u H_d$$
, $W_{PQ} = \lambda_S S(PQ - v_{PQ}^2/2) H_u H_d$

under PQ symmetry breaking P and Q receives a vev ~ v_{PQ} / $\sqrt{2}$ $\rightarrow \mu = \lambda_{H} v_{PQ}^{2}$ / $2M_{P}$

MSY Model

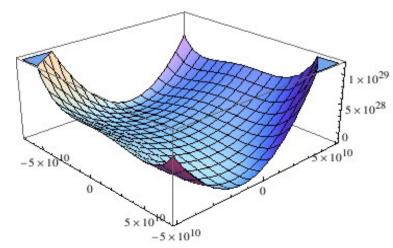

H. Murayama, H. Suzuki and T. Yanagida Phys.Lett. B291 (1992) 418-425

→ a DFSZ-like SUSY axion model with radiatively broken PQ Symmetry.

augment MSSM superpotential with PQ charged fields X, Y:

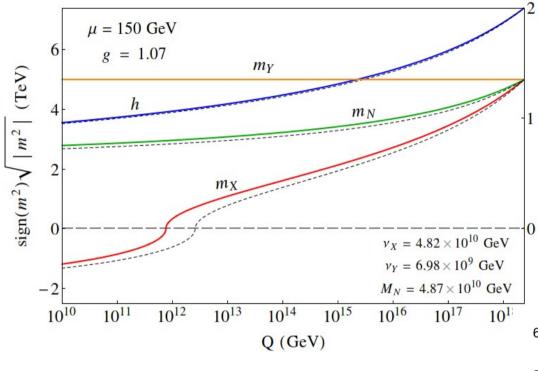
$$\hat{f}' = \frac{1}{2} h_{ij} \hat{X} \hat{N}_i^c \hat{N}_j^c + \frac{f}{M_P} \hat{X}^3 \hat{Y} + \frac{g}{M_P} \hat{X} \hat{Y} \hat{H}_u \hat{H}_d$$

the relevant part of scalar potential is: $V_F \ni \frac{|f|^2}{M_P^2} |\phi_X^3|^2 + \frac{9|f|^2}{M_P^2} |\phi_X^2 \phi_Y|^2$ (very flat)

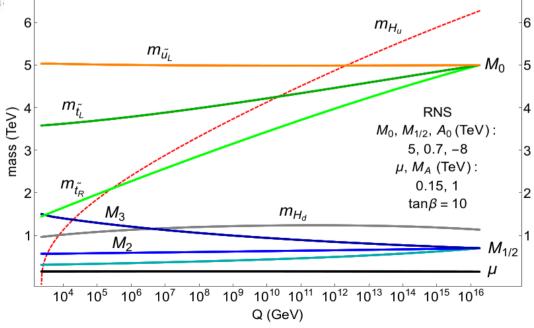

corresponding soft SUSY breaking terms are given by :

$$V_{\text{soft}} = m_X^2 |\phi_X|^2 + m_Y^2 |\phi_Y|^2 + m_{N_i^c}^2 |\phi_{N_i^c}|^2 + \left(\frac{1}{2}h_i A_i \phi_{N_i^c}^2 \phi_X + \frac{f}{M_P} A_f \phi_X^3 \phi_Y + \frac{g}{M_P} A_g H_u H_d \phi_X \phi_Y + h.c.\right)$$

minimize V at a scale Q = v_{PQ} to find vevs of Φ_{X} and Φ_{Y}


$$0 = \frac{9|f|^2}{M_P^2}|v_X^2|^2v_Y + f^*\frac{A_f^*}{M_P}v_X^{*3} + m_Y^2v_Y$$

$$0 = \frac{3|f|^2}{M_P^2}|v_X^2|^2v_X + \frac{18|f|^2}{M_P^2}|v_X|^2|v_Y|^2v_X + 3f^*\frac{A_f^*}{M_P}v_X^{*2}v_Y^* + m_X^2v_X$$


Phys. Rev. D 91, 015003 (2015) (K.J.Bae,H.Baer,H.**Serce**)

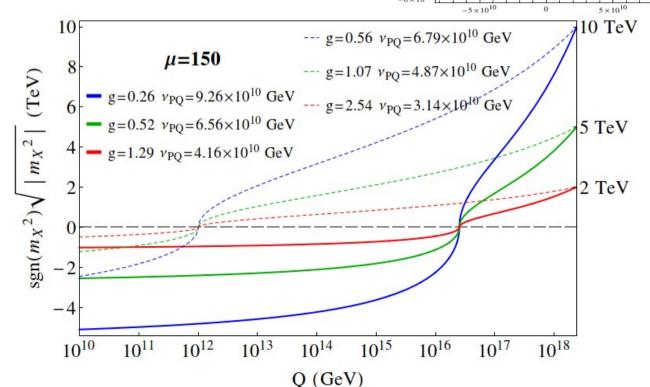
Breaking Symmetry Radiatively

Breaking PQ Symmetry (MSY)

EW Symmetry Breaking

Breaking PQ Symmetry (MSY)

The potential has 2 minima on $\nu_{_{X}}$ - $\nu_{_{Y}}$ plane symmetrically located with


respect to origin. Majorana neutrino mass term and SUSY µ term generated upon symmetry breaking:

$$\mu = g \frac{v_X v_Y}{M_P} \qquad M_{N_i^c} = v_X h_i|_{Q=v_X}$$

what to expect for the scale of g?

 \rightarrow unity: g ~ 1 for m_{3/2} ~ TeV and μ ~100-200 GeV as required by naturalness so that Little Hierarchy μ << m_{3/2} emerges

from MSY.

 4×10^{10}

Phys. Rev. D 91, 015003 (2015) (K.J.Bae,H.Baer,H.**Serce**)

h_i vs $m_{3/2}$ Plane

$$\hat{f}' = \frac{1}{2} h_{ij} \hat{X} \hat{N}_{i}^{c} \hat{N}_{j}^{c} + \frac{f}{M_{P}} \hat{X}^{3} \hat{Y} + \frac{g}{M_{P}} \hat{X}^{2} \hat{Y} \hat{H}_{u} \hat{H}_{d}$$

$$M_{N_{i}^{c}} = v_{X} h_{i} |_{Q=v_{X}} \quad \mu = g \frac{v_{X} v_{Y}}{M_{P}}$$

$$f_{a} = \sqrt{(v_{x}^{2} + 9v_{y}^{2})} \rightarrow 3.7 \times 10^{10} \le f_{a} \le 1.1 \times 10^{11}$$

$$p_{Q} = \sqrt{(v_{x}^{2} + v_{y}^{2})} \rightarrow 3.4 \times 10^{10} \le v_{PQ} \le 9.4 \times 10^{10}$$

$$m_{A} \sim 620 \mu \text{eV} (10^{10} \text{ GeV} / (f_{a}/N_{DW}))$$

$$g = 2$$

$$m_{A} \sim 620 \mu \text{eV} (10^{10} \text{ GeV} / (f_{a}/N_{DW}))$$

$$g = 2$$

$$1$$

$$1.5$$

$$2$$

$$2.5$$

- Since f_a determines axion mass, m_a related to higgsino mass!
- Large values of g > 1 are required for rather low values of $m_{3/2} \sim 2$ TeV.
- For higher values of $m_{3/2} \ge 5$ TeV as favored by gravitino problem, then typically g ~ 0.5 is required to generate the Little Hierarchy.

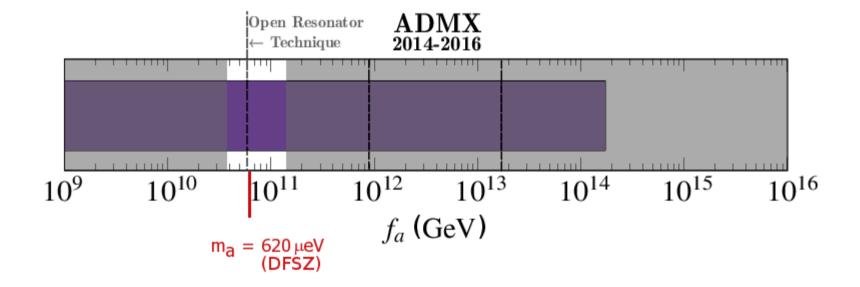
 $\mu = 150 \text{ GeV}$

 $v_{PO} = 6 \times 10^{10}$

 $m_a = 620 \ \mu eV$

3.5

8=0.3


3

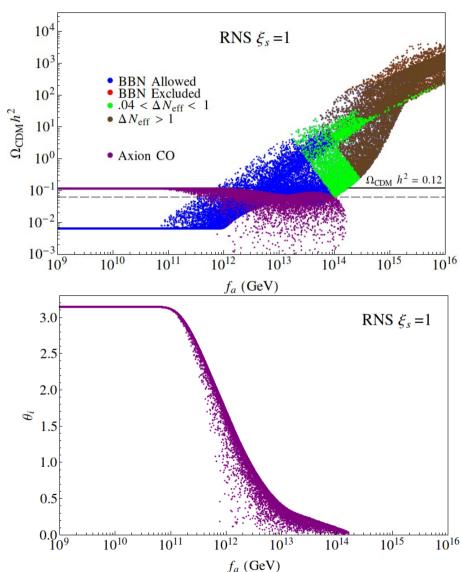
 $h(M_P)$

Axion Search - ADMX II

ADMX-II 2016 reach: $m_a \sim 40 \mu eV^{1}$

Open resonator technique expected sensitivity: $m_a \sim 700 \mu eV^2$

¹ Status of the Axion Dark Matter Experiment (ADMX) L. Rosenberg Talk at the Patras Workshop at CERN (2014)


² Phys. Rev. D. 91, 011701(R) (2015) (G.Rybka, A.Wagner, K.Patel, R.Percival, K.Ramos)

DM from EW and QCD Naturalness

axion-higgsino mixture!

Coupled Boltmann computation of mixed axion-WIMP DM in SUSY DFSZ model with RNS benchmark point by keeping track of energy density and number densities of neutralinos, gravitinos, saxions, axinos, axions and radiation.

- \rightarrow mainly axion CDM (~ 90%), 10% higgsino-like WIMPS unless $f_a \ge 10^{13}\text{-}10^{14}\,\text{GeV}$
- \rightarrow large $f_a \ge 10^{14} \, \text{GeV}$ too much WIMP DM from saxion oscillation / decay

JCAP 1410 (2014) 10, 082 (arxiv:1406.4138) (K.J.Bae,H.Baer,A.Lessa,H.Serce)

Conclusions

- Given multi TeV values of $m_{3/2}$, a class of models typified by MSY give rise to radiatively-driven PQ symmetry breaking and generates a weak scale value of μ (~100-200 GeV) and produces intermediate scale Majorana masses for right-hand neutrinos
- Little Hierarchy characterized by $\mu << m_{_{3/2}}$ emerges quite naturally and is indeed a feature expected from naturalness and LHC bounds.
- $\mu << m_{_{3/2}}$ is a consequence of $v_{PQ} << m_{_{hidden}}$.
- SUSY DFSZ/MSY axion model solves Big Hierarchy, strong CP and μ problem and Little Hierarchy (EW naturalness $\mu \sim m_z$) hence we get mixed axion-higgsino dark matter.