Mono-Boson Searches for Mass Degenerate States

Linda Carpenter PHENO 2015

With A. Anandakrishna, S. Raby

Various BSM Scenarios, SUSY and non-SUSY, predict mass degenerate states

Exciting DM, Compressed SUSY spectra, light stops, Higgsino-World, Supersoft Spectra.

For SUSY, we have seen that colored states should be heavy due to Higgs sector measurements and squark/gluino mass bounds. Therefore the EW sector may be the best bet for detection.

These scenarios are tricky to detect, light states could be hiding at quite low energies

Weakino-Mass Splitting

- $M_2 < M_1 < \mu$ In this limit, the LSP and the NLSP are pure wino.
- $M_2 \simeq \mu \ll M_1$ In this limit, the LSP and the NLSP are a wino-Higgsino mixture.
- $\mu \simeq M_2 \simeq M_1$ In this limit, the LSP and the NLSP are pure Higgsino.

$$\Delta M_{\text{tree}} = m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0} = \frac{M_W^2}{\mu^2} \frac{M_W^2}{M_1 - M_2} \tan^2 \theta_W \sin^2 2\beta + \mathcal{O}\left(\frac{1}{\mu^3}\right)$$

Must add one loop correction

Example Points

Point	μ	M_2	M_1	$m_{\widetilde{\chi}_1^+}$	$m_{\widetilde{\chi}^0_1}$	ΔM
Wino 1(98% Wino)	700	100	200	98.07	98.06	0.152
Higgsino 1(98% Higgsino)	600	300	3000	292.27	292.26	0.178
Wino 2 (96% Wino)	540	150	180	145.71	145.54	0.321
Higgsino 2 (88% Higgsino)	150	300	1200	136.38	130.26	6.29
Mixed 1(72% Wino and 23 % Bino)	500	200	200	193.22	191.25	2.12
Mixed 2(65% Wino and 23 % Bino)	360	200	200	186.13	182.21	4.07
Mixed 3(28% Wino and 23% Bino)	180	200	200	138.27	127.75	10.68

Small Mass splitting implies Soft Decay Products. For most searches, the chargino decay products look like missing energy

Look for ISR Contributions

Pair of mass degenerate particles produced

Parton radiates V boson in initial state

PT distributions

Discovery Potential:

 $S \ge \max\left[5\sqrt{B}, 5, 0.2B\right]$

Low Background High Background No Background

Detectability: $S/\sqrt{B} > 2$

Mono jet and Photon Searches

Search for mono-photons

- $E_{\rm T}^{\rm miss} > 140 {\rm ~GeV}$
- Photon with $p_T > 145$ GeV and $|\eta| < 1.4$
- Veto events with \geq one jet with $p_T > 30 \text{ GeV}$
- The photon is required to be well-separated.
- $\Delta \phi(\gamma, \not\!\!E_T) > 2, \ \Delta R(\gamma, \text{jet}) > 0.4, \ \Delta \phi(\text{jet}, \not\!\!E_T) > 0.4.$
- Events with isolated leptons are vetoed.

Search for mono-jets

- $E_{\rm T}^{\rm miss} > 120 \,\,{\rm GeV}$
- Leading jet with $p_T > 120$ GeV and $|\eta| < 2.0$
- Veto events with ≥ 3 jets with $p_T > 30$ GeV and $|\eta| < 4.5$
- The jet is required to be well-separated.

ATLAS-CONF-2012-147 CMS-PAS-EXO-12-047

- $\Delta \phi(\text{jet}, E_{\text{T}}^{\text{miss}}) > 0.5$
- Events with an isolated lepton are rejected $p_T(e,\mu) > 10 \text{ GeV}$ or $p_T(\tau) > 20 \text{ GeV}$

Search cut flows

Monophotons at 8 TeV

	$Z(\nu\nu) + \gamma$	$W(l\nu) + \gamma$	$\tilde{w}1 + \gamma$	$\tilde{h}2 + \gamma$	$\widetilde{wh3} + \gamma$
Production Cross section (in fb)	7.28×10^{3}	13.96×10^{3}	85.2	12	16
Number of events at 19.6 fb ⁻¹	142688	273616	1669.9	235	313
Photon $p_T > 145$ GeV, $ \eta < 1.4$	473.7	497.98	28	6.6	9.7
Missing Energy $> 140 \text{ GeV}$	370.98	103.97	23	5.2	6.5
$\Delta \phi(\gamma, E_T) > 2$	370.98	98.5	23	5	6.4
Jet veto if $p_T > 30 \text{ GeV}$	359.57	82.08	21	4.1	5.3
Lepton Veto	359.57	49.2	21	3.7	4.5
Events in signal region	344.8 (359.57)	102.5(49.2)	21	3.7	4.5

When we test 13 TeV events weakinos look undiscoverable

Mono-	iets	at 8	TeV

			$(\nu\nu) + j$	$W(\tau\nu) + j$		$W(\mu\nu) + j$	$W(e\nu) + j$
Production Cross section (in f	b)	1	$.2 \times 10^{6}$	1.530×10^{6}		$1.530 imes 10^6$	$1.530 imes 10^6$
Number of events at 10.5 fb^-	1	1.	26×10^7	$1.6 imes 10^7$		$1.6 imes 10^7$	$1.6 imes 10^7$
$E_T > 120 \text{ GeV}$			327465	197584		119202	118881
Jet $p_T > 120$ GeV, $ \eta < 2.0$			196276	131302		71328	74541
Veto events with 3 jets with							
$p_T > 30 \text{ GeV } \& \eta < 4.5$			171964	99107		62974	63296
$\Delta \phi(E_T, j_1) > 0.5$			171964	83957		62974	63296
Lepton Veto			171964	83957		15743	22491
SR1 $\not\!\!E_T > 120$ GeV, Jet $p_T > 120$) GeV	1736	00(171964)	87400 (83957	7)	34200(15743)	36700(22491)
SR2 $\not\!\!E_T > 220$ GeV, Jet $p_T > 220$) GeV	156	00(17728)	5580(4103)		2050(1927)	1880(642)
SR3 $\not\!\!E_T > 350$ GeV, Jet $p_T > 350$	GeV	15	20(1772)	370(315)		158(0)	112(0)
SR4 $\not\!\!E_T > 500$ GeV, Jet $p_T > 500$) GeV		270(0)	39 (0)		42(0)	16(0)
	$\tilde{w}1$ ·	+j	$\tilde{h}2 + j$	$\widetilde{wh3} + j$			
Wino Like state does best	6.9 imes	10^{3}	$7.6 imes 10^2$	$8.9 imes 10^2$	V	Vhen we check	at 13 TeV,
\backslash	7.24 >	$< 10^{4}$	$8.00 imes 10^3$	9.40×10^3	V	Vinos looks dis	coverable for
	73	68	1494	1605	C	Others are unde	etectable.
	42	23	913	970	Т	he detectability	of Higgsisnos
					Α	t 3 inverse ab	has been
	36	65	586	609	15	s a topic of deb	ate.
	36	65	585	609		•	
	36	65	548	539			
	36	65	548	539			
	10	57	173	176			
	21	0	40	33			
	30	6	9.6	4.7			

Mono-Z Search Cut Flow 13 TeV

	$Z(\nu\nu)Z(l^+l^-)$	$W(l\nu)Z(l^+l^-)$	$\tilde{w}1 + Z$	$\tilde{h}2 + Z$	wh3 + Z
Production Cross section (in fb)	162	160.9	56	102.3	376
Number of events at 100 fb^{-1}	16200	16200	5600	10230	37600
Events with a Z ($m_{ll} \in [76, 106]$)	10949	11014	199	394	1248
$\Delta \phi(p_T^Z, E_T) > 2.5$	9365	6555	175	290	887
$p_T^Z/E_T > 0.5$	7926	4110	155	208	571
Jet veto if $p_T > 25 \text{ GeV}$	7073	3357	118	108	353
Lepton Veto	7072	1948	118	97	319
$SR1 \ (E_T > 150 \text{ GeV})$	369	66.7	28.5	25	22.56
$SR1 \ (E_T > 250 \text{ GeV})$	61	7.7	11.7	4.09	0
$SR1 \ (E_T > 350 \text{ GeV})$	15	1.62	2.2	1.02	0
$SR1 \ (E_T > 450 \text{ GeV})$	2.5	0.97	1.1	1.02	0

• Two same-flavor opposite-sign electrons or muons, each with $p_{\rm T}^{\ell} > 20$ GeV, $|\eta^{\ell}| < 2.5$;

- Di-lepton invariant mass close to the Z boson mass: $m_{\ell\ell} \in [76, 106]$ GeV;
- No particle level jet with $p_{\rm T}^j > 25$ GeV and $|\eta^j| < 4.5$;
- $p_{\rm T}^Z/E_{\rm T}^{\rm miss} > 0.5;$
- $\Delta \phi(p_{\rm T}^Z, E_{\rm T}^{\rm miss}) > 2.5$
- $E_{\rm T}^{\rm miss} > 150, \ 250, \ 350, \ 450 \ {\rm GeV}$

Sensitivity in Mono-Z channel 13TeV

Conclusion and Extensions

- Searches for mass degenerate states are well motivated, but difficult
- New Mono-boson searches in low background final states give extended sensitivity to mass degenerate states
- Other W/Z Searches
- Mono-X combination?
- Check sensitivities of W/Z searches for other BSM scenarios

Mono-W ATLAS 8 TeV 20.3 inv fb

- 1 Cambridge-Aachen jet with $R=1.2,\;p_{\rm T}>250$ GeV, $|\eta|<1.2,\;\sqrt{y}>0.4$
- $\not\!\!E_T > 350 \text{ GeV}$
- \leq 1 narrow jet with $p_{\rm T}$ > 40 GeV, $|\eta|$ < 4.5, ΔR (narrow jet, fat jet) > 0.9
- No electrons, muons, or photons with $p_{\rm T} > 10~{\rm GeV}$ and $|\eta| < 2.47$, $|\eta| < 2.5$, and $|\eta| < 2.37$ respectively

Look for Hadronically decaying W boson

Process	$\not\!$	$\not\!\!\!E_T > 500 \text{ GeV}$
$Z \rightarrow \nu \bar{\nu}$	402^{+39}_{-34}	54^{+8}_{-10}
$W \to \ell^{\pm} \nu, Z \to \ell^{\pm} \ell^{\mp}$	210^{+20}_{-18}	22^{+4}_{-5}
WW, WZ, ZZ	57^{+11}_{-8}	$9.1^{+1.3}_{-1.1}$
$t\bar{t}$, single t	39^{+10}_{-4}	$3.7^{+1.7}_{-1.3}$
Total	707^{+48}_{-38}	89^{+9}_{-12}
Data	705	89