Is the Higgs our first supersymmetric particle?

If it looks like a Higgs spins like a Higgs couples like a Higgs it must be a Higgs sneutrino

Carla Biggio ¹, **Jeff Asaf Dror** ², Wee Hao Ng², and Yuval Grossman²

¹Università di Genova

²Cornell University

What do we know about our new scalar?

- New boson
 - is spin 0 (scalar)
 - is neutral
 - couples to fermions and gauge bosons
 - has Particle Data Group entry:

• Can be Higgs, but maybe $\tilde{\nu}_e$?

Our goal: study new bounds on such models

Model framework

- ullet R_P isn't enough, need R symmetry
- Most general assignment of $U(1)_R \rightarrow$
- ullet If arbitrarily L and B

$$W = y_d^{ij} H Q_i D_j + y_e^{ab} H L_a E_b$$

$$\longrightarrow \operatorname{Has} e_L^- \longleftarrow$$

- $m_{u,c,t} = 0$ & $m_e = 0$ & $m_{\nu} = 0$
- $\tau_{proton} = 0$
- $U(1)_R$ due to gravity is inevitable
 - Parametrized by $m_{3/2} \ll {\rm TeV}$

	$U(1)_R$
$Q_{1,2,3}$	1+B
$U_{1,2,3}$	1-B
$D_{1,2,3}$	1-B
$L_{1,2}$	1-L
$E_{1,2}$	1+L
$\mathbf{H} \equiv \mathbf{L_3}$	0
E_3	2
$\tilde{\lambda}, \psi_{\lambda}$	1,-1

Model framework

• $m_{u,c,t} \neq 0$ with introducing H_u, R_d :

$$\int d^2\theta H_u QU$$

- Alternative: low cut-off, $\Lambda \lesssim 4\pi \text{TeV}$
- ullet m_e^- given by higher order terms, e.g.,

$$\int \frac{d^4\theta}{M^2} X^{\dagger} H_u^{\dagger} H E_3$$

 \bullet e_L^- is naturally light

Consequences

 $\text{Mixing between } e^-, \nu_e \text{ and } \tilde{\lambda} : \\ \int d^4\theta H^\dagger e^V H = ghe_L^- \tilde{W}^+ + gh\nu_e \tilde{W}^0 + g'h\nu_e \tilde{B}^0$

•
$$e, \nu_e \rightarrow electroweakinos$$

 $\Rightarrow \chi_e^- \sim e^- + \epsilon \psi_{\tilde{\lambda}}, \epsilon \equiv v_h/M_{\tilde{\lambda}}$

• Known bound-universality(LEP):

$$\delta g_{eeZ} \sim \epsilon^2 \lesssim 0.1\%$$

 $\delta q_{evW} \sim \epsilon^2 \lesssim 1\%$

$$Z, W \sim \widetilde{\widetilde{\lambda}} \times \leftarrow e, \nu$$

$$\widetilde{\widetilde{\lambda}} \times \leftarrow e, \nu$$

Non-standard neutrino interactions

Model produces new operators,

$$\Delta \mathcal{L} = -2\sqrt{2}G_F \epsilon_{\gamma\delta}^{\alpha\beta} \left[\ell_{\alpha}^{\dagger} \bar{\sigma}^{\mu} \ell_{\beta} \right] \left[\nu_{\gamma}^{\dagger} \bar{\sigma}_{\mu} \nu_{\delta} \right] \quad , \epsilon_{e\mu}, \epsilon_{e\tau} = -\frac{1}{2} \epsilon^2$$

- Operator probed through,
 - Muon decay
 - Heavy flavor decays
- ν mixing to heavy states → vanishing neutrinos
 - Probed by short base-line expt

New higgs decays

New higgs decays:

- For $\delta\Gamma(h \to W^*W) \sim 0.1\%$ (at higgs factory) get limit on right
- Could improved using cuts
- Exist similar contributions to $h \to ZZ^*$
- LHC might probe this at $\mathcal{O}(1\%)$ which would probe $\mathcal{O}(m_{\tilde{\lambda}} \lesssim \text{TeV})$

e^+e^- collider - higgs production

 Higgs production at an e⁺e⁻ collider has exciting consequences

- For e^+e^- collider assuming
 - $\sqrt{s} = 1 \text{TeV}$
 - signal detectable if $\delta \sigma / \sigma_{SM} < 1\%$.

Higgs pair production

- SM: $e^+e^- \rightarrow hh$ is loop suppressed
- $\ell_e \tilde{\lambda}$ mixing gives new production channel

- Assuming
 - $\sqrt{s} = \text{TeV}$
 - Detectable if 10 events @ $\mathcal{L} = 300 \, fb^{-1}$
- Independent of v_h

• Combining all the limits:

ullet Generic L in 2HDM the neutrino mass matrix is,

$$m_{\nu} \sim \begin{array}{ccc} \nu_{e} & \nu_{\mu} & \nu_{\tau} \\ \nu_{e} & a & b & c \\ b & 0 & 0 \\ c & 0 & 0 \end{array} \times \epsilon^{2} m_{3/2}$$
 (1)

- \bullet Terms are consequence of the rotation between $\tilde{W}, \tilde{H}_u, \nu_e$
- Massless eigenvector, $ec{v}_0 \equiv \left(0, b/\sqrt{b^2+c^2}, c/\sqrt{b^2+c^2}\right)$
- If identify \vec{v}_0 as $\nu_3 \to \text{inverted mass hierarchy with } \theta_{13} = 0$
- If $a \sim b \sim c$ then we get **tribimaximal mixing**.
- For $\theta_{13} \neq 0$ need to fill 0's
 - \Rightarrow low cutoff $\Lambda \sim$ few TeV.
- Same physics that gives mass to up-type quarks?

Proton decay (time pending)

- Model has large L, $U(1)_R$ induces B
- Proton decay though,

- $\bullet \Rightarrow m_{3/2} \lesssim \text{keV}$
- To get $m_{\nu} \sim 0.1 \mathrm{eV}$ with correct PMNS requires $m_{3/2} \gtrsim 10 \mathrm{eV}$.
- ullet $\Rightarrow m_{3/2}$ bounded within 2 orders of magnitude

Conclusion

- \bullet $\,H^0$ might be superpartner of e_L^-
- We've introduce variety of new bounds
 - NSI
 - Higgs decays
 - $e^+e^- \to hZ$
 - $e^+e^- \rightarrow hh$
- $U(1)_R$ has important effects
 - ullet Prediction of small $heta_{13}$ and inverted mass spectrum
 - \bullet Proton decay restricts allowed values of $m_{3/2}$
- Framework is still in its early stages and needs to be studied further