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The Motivation

The Higgs Potential

LHC measurements suggest a Higgs boson with mass ∼ 125 GeV.

If we evolve the Standard Model RGE equation out to high scales, the
Higgs potential becomes shallow, and even appears to have a second
minimum.
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The Motivation Bunch & Davies (1978), Linde (1982)

Hawking & Moss (1982)

Inflation and the Higgs Potential

During inflation, scalar fields with a shallow potential develop large VEVs:

VEV fluctuates to a large values (due to quantum fluctuations)

Hubble friction from expansion of universe prevents from rolling back
down

φ̈+ 3Hφ̇+ V ′φ = 0
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Motivation

Higgs Relaxation

During reheating, the Hubble parameter decreases.

The Higgs VEV will roll down to its equilibrium position.
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The Motivation

Higher Dimensional Operators

At large VEVs, the Higgs potential may be sensitive to higher
dimensional operators, which are suppressed by large mass powers.

These can lift the second vacuum, making it quasi-stable.

The Higgs VEV could be trapped in it during inflation (assuming it
takes a stochastic distribution of values).
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Motivation

Second Minimum at Large VEVs

If reheating is sufficient to destabilize this false vacuum, then the
Higgs VEV will roll down to the finite-temperature minimum at φ = 0.

A post-inflationary epoch of Higgs relaxation is fairly common
in inflationary models.

V (φ)

φ

Lauren Pearce Higgs Relaxation Leptogenesis May 5th, 2015 6 / 16



Motivation

Second Minimum at Large VEVs

If reheating is sufficient to destabilize this false vacuum, then the
Higgs VEV will roll down to the finite-temperature minimum at φ = 0.

A post-inflationary epoch of Higgs relaxation is fairly common
in inflationary models.

V (φ)

φ

Lauren Pearce Higgs Relaxation Leptogenesis May 5th, 2015 6 / 16



Motivation

Second Minimum at Large VEVs

If reheating is sufficient to destabilize this false vacuum, then the
Higgs VEV will roll down to the finite-temperature minimum at φ = 0.

A post-inflationary epoch of Higgs relaxation is fairly common
in inflationary models.

V (φ)

φ

Lauren Pearce Higgs Relaxation Leptogenesis May 5th, 2015 6 / 16



Motivation

Second Minimum at Large VEVs

If reheating is sufficient to destabilize this false vacuum, then the
Higgs VEV will roll down to the finite-temperature minimum at φ = 0.

A post-inflationary epoch of Higgs relaxation is fairly common
in inflationary models.

V (φ)

φ

Lauren Pearce Higgs Relaxation Leptogenesis May 5th, 2015 6 / 16



Motivation

Second Minimum at Large VEVs

If reheating is sufficient to destabilize this false vacuum, then the
Higgs VEV will roll down to the finite-temperature minimum at φ = 0.

A post-inflationary epoch of Higgs relaxation is fairly common
in inflationary models.

V (φ)

φ

Lauren Pearce Higgs Relaxation Leptogenesis May 5th, 2015 6 / 16



What Good Is It?

Higgs Relaxation: When?

Higgs relaxation begins when H(t) ∼ effective mass of Higgs field

Typically during reheating...

...so there is a plasma of particles present.

Higgs Relaxation & Leptogenesis

During Higgs relaxation, the Sakharov conditions are satisfied:
1 Out of thermal equilibrium: Time-dependent Higgs VEV
2 CP-violation: CKM phases (not enough), SUSY, higher dimensional

operators...
3 Baryon/Lepton number violation: Right-handed Majorana neutrinos,

others...
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Effective Chemical Potential

Effective Operator

Consider the effective operator:

O6 = − 1

Λ2
n

φ2
(
g2AÃ− g ′2BB̃

)
,

where A and B are the SUL(2) and UY(1) gauge fields.

Can generate with loops of heavy fermions (with soft masses) or
thermal loops
(M. E. Shaposhnikov (1987), M. E. Shaposhnikov (1988))

Scale Λn: Mass M or temperature T
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Chemical Potential Dine et. al. (1991)

Cohen, Kaplan, Nelson (1991)

Effective Chemical Potential

Using the electroweak anomaly & integration by parts:

O6 ∝ −
1

Λ2
n

(∂µφ
2)jµB+L,

Effective chemical potential for baryon and lepton number:

µeff = − 1

Λ2
n

(∂tφ
2)

Raises energy of antifermions; lowers energy of fermions.

This operator actually breaks CPT & is similar to one used in
spontaneous baryogenesis scenarios.
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Lepton Number Violation

Lepton Number Violation

Although the energy of the system is minimized at nL 6= 0, still need a
lepton-number-violating process for the system to relax to its
minimum energy.

Use right-handed neutrinos to generated lepton-number-violating
processes...

...but ensure T � MR to suppress standard leptogenesis.
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Lepton Number Violation

Lepton Number Violation

Since T � MR , these processes are rather suppressed.

(However, since the Higgs VEV evolves quickly, ∂tφ
2, and hence the

chemical potential, is large).

The system won’t reach the equilibrium asymmetry, but approaches it:

d

dt
nL + 3HnL ∼= −

2

π2
T 3σR

(
nL −

2

π2
µeff T

2

)
.
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Evolution of Higgs VEV

Evolution of Higgs VEV

Equation of motion for Higgs VEV:

φ̈+ 3H(t)φ̇+ V ′φ(φ,T (t)) = 0.

Asymmetry generation has frozen out before condensate decays are
relevant.

Include running couplings, one-loop correction, and finite temperature
corrections in potential.
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Evolution of Higgs VEV

0 1. ´ 10-12 2. ´ 10-12 3. ´ 10-12 4. ´ 10-12

-5 ´ 1014

0

5 ´ 1014

1 ´ 1015

t @GeV-1D

ΦHt
L@

G
eV

D

Blue: False Vacuum (ΛI = 1015 GeV, ΓI = 108 GeV),

Red: Quantum Fluctuations (ΛI = 1017 GeV, ΓI = 109 GeV).

Arrange so asymmetry generation freezes out during first swing (if ever in
equilibrium):

Suppress wash out from oscillations

Effects of condensate decay negligible
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Lepton Asymmetry: Numerical Calculations
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Leptons to Baryons, Etc.

Leptons to Baryons, Etc.

Electroweak sphalerons later redistribute asymmetry between leptons
and baryons

Entropy dilution from SM degrees of freedom going out of
equilibrium; final asymmetry ηB ∼ 10−10

Generally requires relatively fast reheating (preheating?)
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Conclusions

Conclusions

Fairly general epoch of post-inflationary Higgs relaxation.

Possible to generate observed baryon asymmetry with it, with a
variety of operators.

Thank you! Questions?
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Reheating

Reheating

Recall that this Higgs relaxation occurs during reheating.

Consider a simplistic model of inflaton decay (no preheating, etc.).

Temperature of plasma from radiation density:

ρR =
g∗π

2

30
T 4
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Resulting Asymmetry

Generating the Lepton Asymmetry

We can analyze the lepton asymmetry during three regimes:

1 Initial relaxation of the Higgs VEV (µeff 6= 0).

2 Partial washout by ongoing heavy neutrino exchanges.

3 Subsequent cooling of the universe (µeff ≈ 0).
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Lepton Asymmetry: Analytical Approximations

Initial Relaxation

Equilibrium value of the lepton asymmetry:

nL,eq ∼ µeffT
2 ∼
√
λφ30T

2
max

M2
n

Max asymmetry generated:

nL,eqσRT
3
rlxtrlx

rlx: Time when µeff ≈ 0.

Lauren Pearce Higgs Relaxation Leptogenesis May 5th, 2015 3 / 5



Lepton Asymmetry: Analytical Approximations

Initial Relaxation

Equilibrium value of the lepton asymmetry:

nL,eq ∼ µeffT
2 ∼
√
λφ30T

2
max

M2
n

Max asymmetry generated:

nL,eqσRT
3
rlxtrlx

rlx: Time when µeff ≈ 0.

Lauren Pearce Higgs Relaxation Leptogenesis May 5th, 2015 3 / 5



Lepton Asymmetry: Analytical Approximations

Initial Relaxation

Equilibrium value of the lepton asymmetry:

nL,eq ∼ µeffT
2 ∼
√
λφ30T

2
max

M2
n

Max asymmetry generated:

nL,eqσRT
3
rlxtrlx

rlx: Time when µeff ≈ 0.

Lauren Pearce Higgs Relaxation Leptogenesis May 5th, 2015 3 / 5



Lepton Asymmetry: Analytical Approximations

Washout & Subsequent Cooling

Typically negligible, as T � MR implies cross sections are small.

From Boltzmann equation:

dNL

dt
= − 2

π2
T 3σRNL,

(NL: Lepton number per comoving volume).

Asymptotic value:

NL(T → 0) = NL(Trlx) exp

[
−

(
24 + 3

√
15√

3g∗π7

)
σRMPTR

]
.
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Lepton Asymmetry: Analytical Approximations

Asymmetry

Analytical approxiation for lepton asymmetry as T → 0:

η =
45

2π2

√
λφ30ΛI

M2
nT

2
R

t2rlxΓ2
I ×min

{
1,T 3

rlxtrlxσR
}

exp

[
−

(
24 + 3

√
15√

3g∗π7

)
σRMPTR

]
,

Decreases by about another order of magnitude as SM degree of
freedom go out of equilibrium.

Electroweak sphalerons redistribute between leptons and baryons.
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