





## Theoretical developments for the AWAKE experiment

**A. Pukhov** University of Dusseldorf

**K.Lotov** Budker Institut, Novosibirsk

J.Vieira IST, Lissabon

A.Caldwell, P. Muggli MPI Physik, München



### Short story of





2009 - first idea of PDPWFA

(100 mm proton bunch,

1 TeV  $p^+ -> 600 \text{ GeV } e^-)$ 

2010 - idea

of self-modulation









### Self-modulation idea

Kumar, Pukhov, Lotov PRL 104, 25503 (2010)



The bunch self-modulates at plasma wavelength...

...and excites resonant wake field





### AWAKE baseline



| Plasma density          |
|-------------------------|
| Plasma column radius    |
| Limiting field          |
| Proton bunch population |
| Proton bunch length     |
| Proton bunch radius     |
| Proton bunch energy     |

| /XIO-, CIII,       |
|--------------------|
| 1-1.5 mm           |
| 2.54 GV/m          |
| 3x10 <sup>11</sup> |
| 12 cm              |
| 0.2 mm             |
| 400 GeV            |

7v1014 cm-3

| Electron bunch population | 1.25x10 <sup>9</sup> |
|---------------------------|----------------------|
| Electron bunch energy     | 16 GeV               |
| Electron bunch radius     | 0.25 mm              |
| Electron bunch length     | 1.2 mm               |
| Electron bunch delay      | 16.4 cm              |
| Acceleration distance     | 100 cm               |
|                           |                      |



# Self-modulation of the proton bunch





# Self-modulation at the injection





## **EUCARD**<sup>2</sup> Accelerating electric field





## Phase velocity of the plasma wave

Pukhov et al., Phys Rev Lett (2011)

The wake is slowed down. Its minimum gamma-factor is

$$\gamma_{min}^{2} 40$$

This is order of magnitude below that of the proton bunch

Electron injection sensitive to the phase velocity





## Side injection option



## Side injection option

#### Side injection after 6 meters, at 0.005 rad angle





## On-axis injection

On-axis injection in now viewed as the easiest and straightforward path to demonstration of electron acceleration





## On-axis injection: animation

black points – injected electrons, color map – wakefield potential



- Electrons are trapped from the very beginning by the wakefield of seed perturbation
- At r~3 c/ $\omega_p$  there is a defocusing region for any  $\xi$ . Reason incomplete neutralization of the beam current -> plasma lens effect for protons, defocusing lens for electrons
- Trapped electrons make several synchrotron oscillations in their potential wells



## On-axis injection option





## Entry into plasma issue



Electrons are scattered by magnetic field of the proton bunch before the self-modulation instability can develop





## Entry into plasma issue

#### Possible solutions how to overcome the scattering:

- 1. Shorten the transition region
- 2. Use high current electron bunch
- 3. Use a transversely shaped proton bunch that has a minimum current density on-axis: donut shape proton bunch



### 3D PIC simulations





**B-field** 











## Summary



- Theory and simulations support the experimental developments
- Transition from side injection to on-axis injection: simulated and theoretically explained
- Plasma density non-uniformity effects being studied
- The issue of vacuum-plasma transition region has been identified and solutions proposed



### **Publications**

- Assmann, R. et al. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics
  PLASMA PHYSICS AND CONTROLLED FUSION 56, 084013 (2014)
- Tueckmantel, T.; Pukhov, A H-VLPL: A three-dimensional relativistic PIC/fluid hybrid code
  JOURNAL OF COMPUTATIONAL PHYSICS 269, Pages: 168-180 (2014)
- Lotov, K. V et al. Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam PHYSICS OF PLASMAS 21, 123116 (2014)
- Lotov, K. V.; Pukhov, A.; Caldwell, A. Effect of plasma inhomogeneity on plasma wakefield acceleration driven by long bunches PHYSICS OF PLASMAS 20, 013102 (2013)