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Aims and practice

 There is a variety of different magnet types ...

... Which of those types is the “right“ one?

Prototype of a high current

pulsed quadrupole at GSI [1].

Normal conducting quadrupoles

at J-PARC [2].

Hybrid quadrupole for CLIC [3].
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Aims and practice

 Develope a rule of thumb for choosing the magnet type for

high energy beam transfer channels

 Estimation of costs for a FODO beamline

 Modelling the different magnet types

 Compact design

 Optimization of the energy efficiency

 Estimation of costs

 Determine operation costs

 Determine manufacturing costs

 Determine total costs for the planned life time
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Properties of FODO-transfer channels [5]

 Boundary conditions:

 Straight beamline (no dipoles)

 Periodic structure of the transfer channel

 Matching of the beam parameters is necessary at the start and the end 

of the transfer line

 Transport line has to be long enough to neglect the matching parts

of the transfer line

FODO cell [4].
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Properties of FODO-transfer channels [5]
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 Transport matrix for FODO cell:
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FODO cell [4].
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Properties of FODO-transfer channels [5]

bmax =
2 f 1+ d
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 For large values of f or Bρ:

 Beta function in focussing quadrupole:

bmax µ f µBr

f =
g

l
Br focal length:

FODO cell [4].
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Properties of FODO-transfer channels [5]

e1 = e0

Br( )
0

Br
 Emittance changes due to adiabatic damping:

 Beam envelope: xmax = ebmax

 For large values of Bρ: x = const.

 For large values of f or Bρ: bmax µ f µBr

FODO cell [4].
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Beam envelope as a function of the

magnetic rigidity

Beam parameters:
 BρDesign: 100 Tm

 εDesign: 12 mm mrad

Beamline parameters:
 Magnet length: 1,0 m

 Apertur radius: 52 mm

 Pole radius: 56 mm

 Poletip field: 0,56 T

 Gradient: 10,0 T/m

 Drift length: 10,0 m

Beam envelope as a function of the magnetic rigidity for a straight

FODO-transfer channel without dipoles.
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Modelling the energy requirement

 What is included in the magnet models?

 Power loss of the magnets

 Power loss of the power converters and cables

 Cooling of the magnets (water and LHe), watercooled

components in power converters, and watercooled cables

 What has not been implemented yet?

 Air cooling

 Water consumption

 Dipole magnets
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Normal conducting quadrupole (NC)

 Coil geometry:

 Trapezoidal coil-cross section (less saturation of

magnetic flux density in the joke)

 Criteria for choosing the coil cable:

 Maximum current density of 5 A/mm2

 Determine minimum necessary cooling channel

diameter caused by a pressure drop of up to 10 bar

 Choose cable with minimum power loss of the

magnet

Cross section of the normal

conducting quadrupole.

Cable cross section [6].



23.04.15  |  Status Report  |  Gesellschaft für Schwerionenforschung GmbH  |  PBSP  |  Philipp Gardlowski  |  12

Superferric quadrupole (SF)

 Design of the SF quadrupole is similar to the

SIS100 quadrupoles for FAIR [7]

 Coil geometry/joke geometry:

 Up to 10 turns: rectangular coil-cross section

 More than 10 turns: trapezoidal coil-cross section

 Minimize cold mass (joke mass)

 SIS100 quadrupole cable

 Up to 14,680 A per turn [7]

 Cooling channel for LHe

Cross section of a super-

ferric quadrupole.

Cross section of

the SIS100 quad-

rupole cable [7].
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High current pulsed quadrupole (HCPQ)

 Coil design:

 constant current density in conductor

 cos(2Θ) distribution of the conductor width causes 

cos(2Θ) distribution of the current

 Energy consumption:

 Get inductivity from approximation

 Get capacity, damping resistor and voltage from 

risetime and “flat top” time of the oscillating circuit

 Partial energy recovery possible (efficiency η)

 Energy consumption per shot: E =
1

2
(1-h)CU 2

Cross section of a HCPQ [8].

	

Conductor-cross section [8].
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Power converters and supply cables

 Two types of power converters for NC and SF:
 Switch Mode (SM2): I ≤ 2 kA, U ≤ 600 V

 Silicon Controlled Rectifier (SCR): I > 2 kA, U > 600 V

 Losses scale with current and risetime (1 s for NC & SF)

 Connection cable from power converter to magnet:
 assume a length of 100 m

 Cross section scales with current

 NC: Connect n magnets in series to one power converter

 SF: One power converter powers all magnets in the transfer line

(no losses in SC bypass line and magnets)

 HCPQ: assume10% of the magnet losses as power converter losses
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Energy Recovery

 HCPQ:

 Alternative design of the oscillating circuit with second inductivity

leads to energy recovery up to 80%

 NC & SF:

 SM2 power converters store energy of ramp-down process

 assume that up to 80% of this energy can be stored

Active power of SM2 power converters.

Orange area represents the energy that can

be stored with an efficiency of up to 80%.
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Water recooling

 Power loss of the water recooling
 100% of the power loss of the watercooled components is

cooled by water

 Hybrid water recooling technology

 Pel,water= 0,25 W/Wel,magnet * Pel,magnet

 water pumps: 0,9 kW/pump

 Pumps run while shutdown in order to

keep the magnets‘ cooling channel clean

Hybrid water recooling [9].
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Cooling of superconducting magnets

Quadrupole Losses (4 K) Losses (50-80 K)

Static losses 1,2 W/m 4,6 W/m

Dyn. losses (>0,5 Hz) 26,2 W/m

Dyn. losses (<0,5 Hz) 4,9 W/m

Cryogenic infrastructure Losses (4 K) Losses (50-80 K)

Connecting cryostats 1,0 W/m 5,0 W/m

Vacuum barrier (1x pro 130 m) 2,0 W/piece 4,0 W/piece

Connection box (1x pro 130 m) 4,0 W/piece 10,0 W/piece

LHe-Feedbox 20,0 W/box 85,0 W/box

LHe-Endbox 10,0 W/box 50,0 W/box

Current-Feedbox 5,0 W/box 20,0 W/box

Current Leads

(2 pieces per familiy)

5,0 W/piece 31,5 W/piece

 Continous cryostat, no cold-warm transitions
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Cooling of superconducting magnets

 Calculation of electrical power loss from cryo losses:
 Losses caused by refrigeration of Helium and water

 Pel,4K = (250 W/W4K + 56,3 W/W4K) * P4K

 Pel,50-80K = (15 W/W50-80K + 3,4 W/W50-80K) * P50-80K

 Scale cryo losses with cold mass of the joke

 Cryo cooling runs all year with DC load (as well while shutdown)
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Estimation of energy consumption

Energy consumption as a function of the

repetition rate (HCPQ with 0% energy recovery, 

SM2 power converters with 0% energy recovery, SF 

in DC operation).

Energy consumption as a function of the

repetition rate (HCPQ with 80% energy recovery, 

SM2 powerconverters with 80% energy recovery, 

SF in DC operation)

Beamline parameters
 Magnet length: 0.65 m

 Gradient: 10 T/m

 Aperture radius: 47 mm

 Drift length: 10.0 m

 25 FODO cells (500 m)

 Fast extraction: 10 µs

with energy recovery (80%)without energy recovery (0%)
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Estimation of energy consumption

Energy consumption as a function of the

gradient (HCPQ with 0% energy recovery, SM2 

power converters with 0% energy recovery, SF in 

DC operation).

Energy consumption as a function of the

gradient (HCPQ with 80% energy recovery, SM2 

power converters with 80% energy recovery, SF in 

DC operation).

with energy recovery (80%)without energy recovery (0%)

Beamline parameters
 Magnet length: 0.65 m

 Aperture radius: 47 mm

 Drift length: 10.0 m

 Repetition rate: 0.2 Hz

 25 FODO cells (500 m)

 Fast extraction: 10 µs
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Estimation of energy consumption

Energy consumption as a function of the

aperture radius (HCPQ with 0% energy recovery, 

SM2 power converters with 0% energy recovery, SF 

in DC operation).

Energy consumption as a function of the

aperture radius (HCPQ with 0% energy recovery, 

SM2 power converters with 0% energy recovery, SF 

in DC operation).

with energy recovery (80%)without energy recovery (0%)

Beamline parameters
 Magnet length: 0.65 m

 Gradient: 10 T/m

 Drift length: 10.0 m

 Repetition rate: 0.2 Hz

 25 FODO cells (500 m)

 Fast extraction: 10 µs
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Estimation of operation costs

 Beam parameters:
 εDesign = 12 mm mrad

 BρDesign = 100 Tm

 Beamline parameters:

 Magnet length: 0.65 m

 Apertur radius: 47 mm

 Gradient: 10,0 T/m

 Drift length: 10,0 m

 Repetition rate: 0.2 Hz

 Transfer channel length: 500m

 Assumptions:

 6000 operating hours per year

 Energy prices increase of 5% per year
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Preliminary results

 NC:

 AC operation is considerably more energy efficient than DC operation

 good for low repetition rates (<0.5 Hz), small apertures, and small gradients

 HCPQ:

 field of application depends on energy recovery

 with energy recovery: capable for low and high repetition rates (<1.5 Hz), 

gradients up to 80 T/m and small apertures

 without energy recovery: sometimes less efficient than NC quadrupole

 SF:

 DC operation is capable for transfer channels

 AC operation causes additional losses

 energy efficient solution for large apertures and high repetition rates
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TODO list

 Expand model by SC, PM, and hybrid quadrupoles

 Expand model by dipoles

 Mixing different technologies in one transfer channel:
 e.g. PM quadrupole + NC dipole

 Determine production costs and total costs

 Optimize drift length

 Field quality

 Generate a map: “Which magnet type is the most 

energy efficient type for which requirements?”
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Thank you for your attention!


