

EUROPEAN SPALLATION SOURCE

High Power IOTs

Chiara Marrelli Morten Jensen

www.europeanspallationsource.se

2nd Eucard-2 Annual meting, Barcelona, 23 April 2015

The Inductive Output Tube

EUROPEAN SPALLATION SOURCE

Invented in 1938 by Andrew V. Haeff as a source for radar

- To overcome limitation of output power and efficiency by grid and anode interception
- > The energy of the electron beam is extracted trough a resonant cavity
- Achieved: 100 W at 450 MHz, 10 dB power gain and 35% efficiency

Used first in 1939 to transmit television images from the Empire State Building to the New York World Fair

IOTs then lay dormant

- Intense competition with velocity modulated tubes (klystron had just been invented by the Varian brothers)
- Difficult to manufacture
- Low gain

The IOT is often described as a cross between a klystron and a triode hence Eimac's trade name 'Klystrode'

The Main Principles

IOTs highlights

EUROPEAN SPALLATION SOURCE

• The current also depends on the grid voltage.

As a result, the tube does not saturate as fast as a klystron

- \checkmark High efficiency at point of operation
- ✓ Efficiency drops slowly at reduced output power
- ✓ Good Linearity
- Because there is no velocity modulation, extraction efficiency can be high (small velocity spread in the beam): 70-75% are typical values
- The device is short, so pushing factor is small
- Collector only ever handles spent RF beam (e.g. at Eff. 50% P_{coll} = RF power)

Good for machines which require the amplifier to operate at different power levels

- varying power loads
- Non uniform power profiles
- Margins for overhead for regulation
- One-to-one relationship with amplifier to accelerating structure

Proton Linacs in particular can benefit and circulating machines with high regulation requirements

Drawbacks: Gain is low (20-23 dB). This is a smaller problem than a few years ago thanks to the improvement in solid state technology.

Frequency is limited to about 1.3 GHz

Efficiency comparison of Klystrons and IOTs

EUROPEAN SPALLATION SOURCE

IOT measurements courtesy of M. Boyle, L3

- Based on broadcast IOT L-4444
- System setup limited by drive power and beam voltage
- IOT setup for maximum gain (not efficiency) without breakdown

- Klystron assumed to have same saturated efficiency as the IOT
- No optimisation of coupling, voltages, perveance for different power levels

Typical Broadcast IOT

Courtesy of e2v

Cathode-grid assembly ₆

Output ceramic. External output cavity is not shown

Selection of facilities using IOTs

Other IOT technology

IOTs designed for various applications But series production has been < 100 kW

microwave power products division

267 MHz 300 kW CW

Depressed collector IOTs

L3 wide band IOT

700 MHz HOM IOT Experience

The ESS project

- ESS is a neutron spallation source for neutron scattering measurements.
- The neutrons are produced by a 2 GeV proton beam impacting on a tungsten target.
- The proton linac will be the most powerful ever built and it will require over 150 RF sources.

ESS accelerator parameters:

Average beam power: 5 MW Pulse length: 2.86 ms Peak beam power: 125 MW Pulse repetition rate: 14 Hz Proton energy: 2 GeV Peak beam current: 62.5 mA High availability: >95% Flexible design for a future power upgrade

ESS will be a "green" facility: this means that it must guarantee at the same time:

- Machine reliability
- Energy efficiency

EUROPEAN SPALLATION

SOURCE

The ESS accelerator

Coupler Number

** Plus overhead for control

An IOT for ESS

Parameter		Comment
Frequency	704.42 MHz	Bandwidth > +/- 0.5 MHz
Maximum Power	1.2 MW	Average power during the pulse
RF Pulse length	Up to 3.5 ms	Beam pulse 2.86 ms
Duty factor	Up to 5%	Pulse rep. frequency fixed to 14 Hz
Efficiency	Target > 65%	
High Voltage	Low	Expected < 50 kV
Design Lifetime	> 50,000 hrs	

Work is being carried out in collaboration with CERN

- ESS to procure prototypes
- CERN to make space and utilities available for testing

Target: Approval for ESS series production in 2017/18

3.3 MW powerreduction by using IOTsfor High Beta12

Two IOTs to be delivered in 2016

- Two Multi-Beam IOTs being designed
 - Thales/CPI Consortium
 - L3
- Contracts signed in September 2014
- Project duration: 24 months
- Long term testing at CERN
- Approval for series tender 2017/18

Multi-Beam IOTs for ESS

EUROPEAN SPALLATION SOURCE

THALES

microwave power products division

Multi-Beam IOT 10 beams 1.2 MW 704.42 MHz

Output Cavity and DC Beam Studies Courtesy of L3 Communications

- Ten beams on a single bolt circle
- Output cavity supports a large number of modes
- HFSS used to map modes near harmonics of the drive frequency

Beam transport and RF Interactions Courtesy of L3 Communications

RF Output Circuit and Output Window Courtesy of L3 Communications

- Air cooled SLAC design Coaxial window from B-factory klystron
 - 1.2 MW CW operation, 476 MHz
 - TiN coated and has modest peak electric field

 Design was rescaled for 704 MHz using HFSS

Operational Optimisations Courtesy of L3 Communications

10

50

8

Input Power [kW]

12

55

14

16

60 18

EUROPEAN SPALLATION SOURCE

0.30

Efficiency [%] 72 70

> 68 66

> > 35

40

45

Voltage [kV]

0

for better performance

- Increases gain
- Increases efficiency
- Decreases body current

Simulations are for 10 beams

MAGIC Prediction of MB-IOT Performance Courtesy of Thales and CPI

Power Transfer Curve

MAGIC-3D simulation of one beam with MB-IOT offaxis B-field

Conclusions and Future Prospects

EUROPEAN SPALLATION SOURCE

ESS requires 1.2 MW plus overhead:

- Short development time available
- Preference for low voltage
- 'Proven' technology
- Factor of 10 up in power

What else could we achieve?

- More power
- Higher efficiency
- Better reliability
- Smaller footprint, etc.

Example:

MBIOT development for ESS

- High voltage, 1 MW, single cathode
- 10 MW MBIOT by combination of 1 MW tubes

Grid controlled emission with bunch forming cavities HE-IOT (from 75% to.... 90%) Grid controlled emission + "rotating" cavity + output cavity

EUROPEAN SPALLATION SOURCE

Special thanks to: Thales, CPI and L3 for agreeing to publish some of the design details, calculations and predictions