Network awareness in PanDA

Why PanDA should care about networking? 1 of 2

- Networking is important for data management in PanDA
 - Distributed workload management systems need to access data both for input and output for processing
 - Data transfers/access is done in multiple steps in PanDA: pilot data movers, direct access, DQ2 for transfers in ATLAS, PhEDEx in CMS, pandamover/FAX, PD2P...
 - Future data transfer systems may be optimised for network performance PanDA will automatically use them
 - But network information can be also used directly in workflow management in PanDA at a higher level — first step to try
 - We should optimise PanDA workflow for data transfer/access using network information

Why PanDA should care about networking? 2 of 2

- Network performance is important for workflow decisions
 - PanDA automatically chooses job execution site
 - It is multi-level decision tree task brokerage, job brokerage, dispatcher, policy driven or predictive (PD2P)
 - Site selection can benefit from network information
 - Currently decisions are based on processing and storage requirements
 - · We should try to use network information in these decisions
 - Can we go even further network provisioning?
- Main Goal network as resource
 - Optimal WMS design should take network capability into account
 - Network as resource should be managed (i.e. provisioned)

Steps

- Collect network information
- Storage and access
- Using network information
- Using dynamic circuits

Sources of Network Information

- DDM Sonar measurements
 - ATLAS measures transfer rates for files between Tier 1 and Tier 2 sites (information used for site white/blacklisting)
 - Measurements available for small, medium and large files
- perfSonar measurements
 - All WLCG sites are being instrumented with PS boxes
- FAX measurements
 - Read time for remote files are measured for pairs of sites
 - Standard PanDA test jobs (HammerCloud jobs) are used

Dataflow

- Data is being transformed
 - Historical to most recent
 - ATLAS sites to PanDA queues

Faster User Analysis through FAX

- First use case for network integration with PanDA
- PanDA brokerage will use concept of nearby sites
 - Calculate weight based on usual brokerage criteria (availability of CPU, release, pilot rate...)
 - Add network transfer cost to brokerage weight
 - Jobs will be sent to the site with best weight not necessary the site with local data
 - If nearby site has less wait time, access the data through FAX

FAX remote reading stats

- Actual jobs statistics for period of November-December
- https://twiki.cern.ch/twiki/bin/view/AtlasComputing/MonitoringFax#More_Monitoring_links

Conclusions for Case 1

- Network data collection working well
- PanDA brokerage working well
 - Achieved goal of reducing waiting time
 - Well balanced local vs remote access
 - Is being tuned

Cloud Selection

- Second use case for network integration with PanDA
- Optimise choice of T1-T2 pairing (cloud selection)
 - In ATLAS, production tasks are assigned to Tier 1's
 - Tier 2's are attached to a Tier 1 cloud for data processing
 - Any T2 may be attached to multiple T1's
 - Currently, operations team makes this assignment manually
 - This could/should be automated using network information
 - For example, each T2 could be assigned to a native cloud by operations team, and PanDA will assign to other clouds based on network performance metrics

DDM Sonar Data

Legend: Sonar Small|Sonar Medium|Sonar Large Green, bold: the best T2D site for T1 for each file size

	ARC	BNL	FZK-LCG2	IN2P3-CC	INFN-T1	NDGF-T1
BEIJING-LCG2	0.0 0.0 19.77	0.0 0.0 16.17		same cloud	0.0 1.02 1.06	0.0 0.0 19.77
BostonU		same cloud	0.0 1.05 0.66		0.0 2.09 0.0	
CA-MCGILL-CLUMEQ-T2	0.85 0.0 73.75	0.0 0.0 29.54	1.71 13.04 29.6	0.0 8.13 18.34	0.46 9.84 15.94	0.85 0.0 73.75
CA-SCINET-T2	0.0 0.0 62.91	2.89 20.71 20.83	3.98 17.82 28.05	2.77 24.1 30.93	0.0 0.0 27.25	0.0 0.0 62.91
CA-VICTORIA-WESTGRID-T2	0.0 13.9 33.57	2.37 18.69 25.66	0.0 15.62 23.41	0.55 17.46 16.8	0.0 23.27 26.86	0.0 13.9 33.57
CSCS-LCG2	0.0 0.0 89.36		same cloud			0.0 0.0 89.36
DESY-HH	6.59 15.96 50.41	3.7 9.76 23.33	same cloud	3.69 25.82 30.59	5.43 34.61 33.16	6.59 15.96 50.41
DESY-ZN	0.0 7.05 11.04	0.46 26.91 39.8	same cloud	0.0 0.0 3.85	6.65 0.0 3.76	0.0 7.05 11.04
GRIF-IRFU	0.0 0.0 57.49	0.0 2.41 4.05	0.11 23.27 30.3	same cloud	7.75 0.0 47.09	0.0 0.0 57.49
GRIF-LAL	0.0 60.78 92.17	1.22 2.48 9.02	0.0 15.43 52.52	same cloud	6.4 0.0 102.46	0.0 60.78 92.17
GRIF-LPNHE	0.0 2.48 25.68	0.88 2.02 3.78	0.0 0.0 13.1	same cloud	0.0 3.47 6.91	0.0 2.48 25.68
GoeGrid	1.38 5.64 11.17	0.47 2.24 9.24	same cloud	0.0 9.82 12.47	0.48 5.83 8.46	1.38 5.64 11.17
GreatLakesT2	2.75 20.43 30.82	same cloud	2.03 15.26 23.71	0.0 7.97 23.59	1.8 17.0 15.64	2.75 20.43 30.82
HarvardU		same cloud				
IFAE	0.0 37.78 39.86	0.0 23.94 13.7	3.91 36.43 56.52	0.0 12.49 30.19	4.91 54.54 53.92	0.0 37.78 39.86
IFIC-LCG2	0.0 5.3 5.17	0.0 4.69 6.73	0.0 5.38 8.18	0.0 0.0 15.19	0.0 0.0 11.55	0.0 5.3 5.17

http://aipanda021.cern.ch/networking/t1tot2d_matrix/

Tier 1 View

Best 10 T2Ds for INFN-T1, large files

	UKI-SOUTHGRID-CAM-HEP	GRIF-LAL	IN2P3-LPC	IFAE	GRIF-IRFU	IN2P3-LAPP	UKI-SCOTGRID-ECDF	IN2P3-CPPM	LRZ-LMU	MidwestT2
INFN-T1	108.28	102.46	54.3	53.92	47.09	43.86	40.51	37.4	34.15	33.87

http://aipanda021.cern.ch/networking/t2dfort1/INFN-T1/

Tier 2 View

Best 5 T1s for DESY-HH, large files, throughput >= 10MB/s

	ARC	NDGF-T1	SARA-MATRIX	INFN-T1	IN2P3-CC
DESY-HH	50.41	50.41	36.04	33.16	30.59

http://aipanda021.cern.ch/networking/t1fort2d/DESY-HH/

Improving Site Association

Multicloud statistics for queues on DESY-HH

	Current	Suggested	History of suggested
ANALY_DESY-HH	None	ND,NL,IT,FR,ES	
ANALY_DESY-HH_TEST	NL	ND,NL,IT,FR,ES	
DESY-HH-all-prod-CEs	ES,FR,IT,UK	ND,NL,IT,FR,ES	2014-06-24: ND,NL,IT,FR,ES 2014-06-20: ,ND,NL,IT,FR,ES 2014-06-17: ,ND,NL,IT,FR,ES 2014-06-17: ,ND,NL,IT,FR,ES 2014-06-17: ,ND,NL,IT,FR,ES
DESY-HH_TEST	CERN,NL,ES,IT	ND,NL,IT,FR,ES	

 Values of multicloud calculated automatically basing on actual network links between T2 site and T1 sites from another clouds

Conclusion for Case 2

- Working well in real time
- Currently in testing stage
 - Multicloud values calculated but updated only for several US sites
 - Update of the other sites still in hands of ADC experts

Summary

- We collect, store and use network data, all modules deployed as services on ATLAS infrastructure and work in automatic mode
- First 2 use cases for network integration with PanDA implemented and working well
 - FAX overflow since spring
 - Cloud selection since fall
- Reliability of services, involved into data collecting, delivering and storing is becoming a highly important point
- We need more monitoring options for newly implemented features
- Next step: software defined network integration, i.e. network provisioning
 - Study is ongoing
 - PheDEx circuit booking and DaTRi integration project has already started