

Areas of developments in storage at CERN

Massimo Lamanna

Source: A.J.Peters and FDO section

CERN IT Department CH-1211 Genève 23<u>1</u> Switzerland

CERI

- EOS: Large disk farms for physics and beyond
 - Currently ~25 PB used quota
 - $\rightarrow 100 \text{ PB quota (@LHC Run2)}$
- Developed in CERN/IT (DSS)
- Original goal
 - Large scale (PBs for 100s/1000s independent scientists) analysis of LHC data
 - Arbitrary level of data durability via cross-node file replication or RAIN using commodity hardware
- Status
 - Open to non-physics use cases
 - NB: large number of protocols available!

EOS highlights

- \cdot No need for a central relational database
 - \cdot In memory hashtable
 - Designed for infinite scalability and arbitrary reliability
 - Replica or Erasure Code (ReedSalomon, LDPC...)
- \cdot Disantagle physical and logical view
 - Disks keep file replicas, MGM manages them (no disk – service link)
 - Easy to manage realistic hardware (heterogeneity)

CERN IT Department CH-1211 Genève 233 Switzerland

- Multi site federation support
 - Wigner / Geneva > 1000 Km distance

In-memory catalogue (MGM)

- Cornerstone of the architecture
- Initial concern
 - · Run out of memory?
 - Durability
- \cdot Where are we?
 - Low-latency file access with in-memory namespace ~ 200 M files
 - · Stable and durable (Master + Slaves)
 - · Demonstrated by doing it
 - Investigation ares
 - \cdot Stability above the 1B-file area
 - · EOS Diamond
 - · EOS Ceph inbreeding

CERN IT Department CH-1211 Genève 23<u>4</u> Switzerland

RAIN & Erasure Encoding in EOS

Redundant Array of independent nodes

RAIN

- Block Striping allows parallel IO
 - boost single file performance

e.g. with K=4 280 MB/s streaming write & 400 MB/s

Department

streaming write

- Erasure Encoding + Block Checksumming allows
 - error correction on the fly

• up to M concurrent disk failures without data loss

 disk space savings compared to file replication

e.g. 25% less space needed for (4+2) vs. 2 replica

- Not deployed at large scale: several scenarios to be investigated:
 - Interplay replica/fragments and self-healing
 - New modes of operations (large n of fragments)

EOS in production

- Six multi-PB installations
 - few thousand disks per instance
 - Tape storage with CASTOR
 - New disks going mainly to EOS
 - Operated by the same team
- Simplified life-cycle management workflows for on-going replacement/repair of hardware
 - JBOD disks (no RAID controller) using software RAIN
 - Low-latency file access with in-memory namespace ~ 200 M files
 - Fine-grained access control and quota management
- GRID and local storage element
 - Accessed from thousands of CERN-local and remote batch nodes with Kerberos and GSI authentication
 - Full support for XRootD, GridFTP, HTTP(S) & WebDav protocol - and – mountable with FUSE as a remote file system
 - notably users love fuse...

CERN IT

236

Department CH-1211 Genève

Switzerland

CERN

EOS in production (some challenges)

- What happens above ~ 1B files?
 - OK if static
 - What if the rate of changes goes up?
- CERNBOX
 - Marry EOS (EOSUSER) with your laptop
 - Flexibility of the sync client
 - Power of a file system (e.g. LXBATCH jobs using the EOS as a file system
 - Both views coincide!

EOS installed across the CERN computer centres

- EOS takes advantages of the two CERN computer centres
 - Coping with ~20-ms
 latency
 - Distributing copies
- across the two sites for dependability and performance
- Status
 - As today we are crossing the 40% mark

EOS 2014 Deployment

CERN

EOS 2015 Deployment

CERN

CERN**IT** Department

- 2 sites across 1000 km: OK
- Can we do more?
- Locality in a several-site installation
- EOS hit-the-road-jack kit :)

CERN IT Department CH-1211 Genève 23<u>11</u> Switzerland

Workshop on Cloud Services for File Synchronisation and Sharing

All material is online (slides and presentations recording)

>80 participants

Broad interest (large participation outside our "traditional" community)

Several companies

CERNBox presented

Workshop on Cloud Services for File Synchronisation and Sharing

CERNBox

Conclusion

- EOS is our flagship project
- Essential for the LHC Run 2
 - Revised utilisation of all DSS projects
- EOS evolution
 - Number of challenging questions
 - Important for LHC and non-LHC usage