(DISTRIBUTED) STRUCTURED STORAGE FOR ATLAS

Mario Lassnig
CERN PH-ADP-CO/DQ2

mario.lassnig@cern.ch
ph-adp-ddm-lab@cern.ch

Preface: Say No to NoSQL

- Buzzword term to annoy RDBMS people
 - Correct CS term: (Distributed) Structured Storage
 - (many of them support SQL-like queries anyway!)
- Essentially two different models
 - "Big Data"-capable (=linear scale out) vs. the rest
- And then it's "feature matrix mix'n'match"
 - CAP Theorem
 - Consistency Availability Partition tolerance
 - ACID vs BASE
 - Basically available Soft state Eventual consistency
 - \blacksquare ZERO(W) ANY(W) ONE(RW) QUORUM(RW) ALL(RW)
 - Query vs MapReduce

Overview

- ATLAS relies heavily on Oracle
 - We have many use cases that put a high load on Oracle
 - Much of this load is constantly increasing requiring constant attention to optimisation in order to scale
 - Requires schema denormalisation, relaxation of constraints, service splitting, ...
 - Oracle query optimiser does not always yield optimum execution plan requiring manual tuning
 - Oracle query plans are not always stable requiring manual interventions
 - Costly for developers, DBAs, DB experts, and hardware
- Structured Storage Initiative by the DQ2 Team, soon followed by PanDA and TDAQ
 - $lue{}$ OLAP use cases: Query and compute n partitions for historical data aggregation and summarisation, with lookups from m other tables
 - Offload OLAP use cases from Oracle to the "right tool for the job"
- So, no, we don't want to get rid of Oracle for OLTP, we need it, but...
 - Structured storage is a good solution for our many OLAP cases
 - Reduce (human and machine) workload
 - Get results faster: non-invasive parallel data crunching
 - No need to buy special hardware
 - Community support and commercial support available
 - Operational cost is very low, so it's almost a free lunch

Again:

Some examples

- Document Stores
 - Semi structured data (schema=data)
 - e.g., CouchDB, MongoDB
- Graph Databases
 - Index free adjacency of data
 - e.g., Neo4j
- Key-Value
 - Schema-less, can be sorted or unsorted
 - e.g., BigTable, SimpleDB, memcachedb, Kyoto Cabinet, Dynamo, Cassandra, Voldemort, Berkeley DB (=Oracle NoSQL)
- Tabular Databases
 - Multidimensional sorted maps
 - e.g., BigTable, HBase
- Data Structure Stores
 - More complex datatypes than strings and numbers
 - e.g., Redis, MongoDB

Objective

- Evaluate as many different products as possible that can match ATLAS use cases, subject to
 - Development time
 - Operational cost
 - Support (commercial and community)
 - Performance characteristics
- So far, ATLAS has experience with
 - Oracle (DQ2, PanDA)
 - Hadoop HDFS+HBase (DQ2)
 - Cassandra (DQ2, PanDA, TDAQ)
 - MongoDB (DQ2)
 - SimpleDB (PanDA)

Important:

Most of us are not database administrators/experts. We need to use the *right* tool for a given use case under time constraints.

Our project experiences

- DQ2 Accounting
- DQ2 Tracing
- DQ2 Popularity and Simulation
- DQ2 Log File Analysis
- PanDA Monitoring
- TDAQ Online Monitoring

DQ2 Accounting

(Mario Lassnig, Lisa Azzurra Chinzer)

- Break down usage of ATLAS data in DQ2
 - Free-form querying with history (difficult to predefine views)
 - Metadata based
 {nbfiles, bytes} := {project=data10*,datatype=ESD,location=CERN*}
 - Constant updates to the data, new keys, bulk operations...
 - Immense cost on Oracle
 - Developer time, DBA time, Hardware
- While we developed the Oracle solution, we evaluated other possible database backends
 - MongoDB, HBase
 - Can we do better?

DQ2 Accounting (MongoDB)

(Mario Lassnig, Lisa Azzurra Chinzer)

Option 1:

Keep source data in MongoDB and MapReduce into summary

- Migrate catalogues: rich data model
- However, MapReduce problematic
 - Apparently addressed in Mongo 2.x
 - Locking, concurrency, sharding

Option 2:

Only summary to MongoDB

- Calculate summary in Oracle and write summary to MongoDB
- Much better than Oracle's star schema summary

Remarks

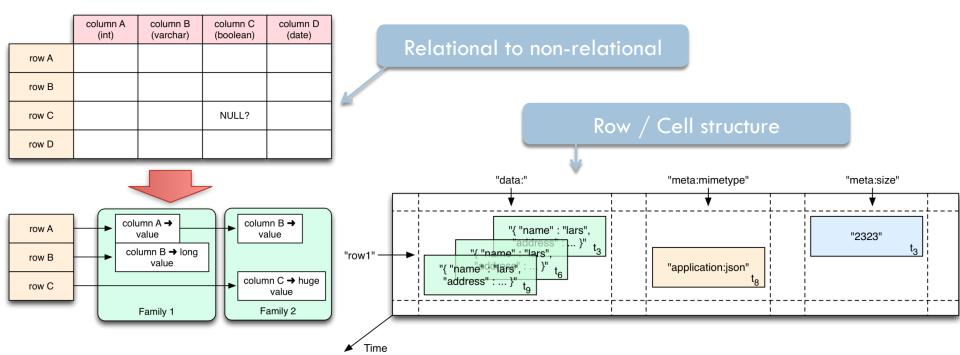
- MongoDB took all data linearly
- Full durability: 2500 upserts/sec
- Relaxed durability: 6000 upserts/sec
- Keeps all indexes in memory
 - 40 mio datasets fully indexed ~ 2GB
- By now (November), even the Oracle summarization breaks sometimes
 - Locked statistics, and all other kinds of magic

```
PRIMARY> db.kvs.findOne({'_id': 'dc76b9b57360485f9938a318a77dd5f3'})
        "[otherfields]" : 104233247,
        "_id" : "dc76b9b57360485f9938a318a77dd5f3".
        "aglt2_userdisk" : {
                "rarchived" : "primary",
                "rgroup": "/atlas/role=null",
                "rlength" : 3650135,
                "rnbfiles" : 2,
                "rowner": "/o=grid-fr/c=fr/o=cea/ou=irfu/cn=nayanka bolnet",
                "ts" : ISODate("2011-05-11T16:01:21Z")
       },
"cyfronet-lcg2_scratchdisk" : {
    " "default"
                "rarchived" : "default",
                "rgroup": "/atlas/role=null",
                "rlength" : 1825068,
                "rnbfiles" : 1,
                "rowner": "/o=grid-fr/c=fr/o=cea/ou=irfu/cn=nayanka bolnet",
                "ts": ISODate("2011-04-11T22:11:07Z")
        "hidden": 0,
        "length": 3650135,
        "locations": ["aglt2_userdisk", "cyfronet-lcg2_scratchdisk"],
        "name": "user.nbolnet.0104233247.260895.lib._000601",
        "nbfiles" : 2,
        "owner": "/o=grid-fr/c=fr/o=cea/ou=irfu/cn=nayanka bolnet",
        "replicas" : 2,
        "ts" : ISODate("2011-05-11T16:23:26Z"),
        "user" : "user",
        "username" : "nbolnet"
```

DQ2 Accounting (HBase)

(Mario Lassnig, Lisa Azzurra Chinzer)

- Current state: try to do it with Hadoop HBase
 - Proper MapReduce support, efficient data handling
 - Runs on clustered HDFS
- HBase is a database for multidimensional sparse columns with versioned cells
 - Not quite that obvious like the hashtables for MongoDB? Depends...
 - ColumnFamilies are a set of (possibly overlapping) columns that "belong together" (i.e., in the relational world this would be a view)



DQ2 Accounting (HBase)

(Mario Lassnig, Lisa Azzurra Chinzer)

Current state

- DDMLAB-hosted 10 node Hadoop cluster (with no special optimisation)
- Full migration of Oracle content (400M rows, 20GB) into HBase data model (20M rows, 24GB): 2h 40m
- MapReduce once over data: 40 mins (random reads ~4K blocks, ~2.5MB/sec per node)
 - HDFS replication factor 4... (40*4)/60 (replication factor to a full 10, then MapReduce in 15min)
 - Compared with Oracle: 5-6 hours, if it finishes at all...
 - Can do all accounting summaries in one MapReduce run

Still ToDo

- One-way synchronisation from Oracle to HBase
 - Not trivial
 - How to get data out of Oracle at the required Hertz and in proper order?
 - (Accounting not a realtime service, perhaps just dump the data once per day?)
- Summary retrieval
 - Trivial
- Ad-hoc queries need a slightly different data model than the MapReduce one
 - otherwise you would have to MapReduce ad-hoc, which requires some more machines

DQ2 Log Analysis (HDFS)

(Vincent Garonne, Mario Lassnig)

- Map-Reducing CSV files on Hadoop HDFS
 - Dump table from Oracle (DQ2 Traces)
 - Copy log files to HDFS (DQ2 Apache Logs)
- Use Hadoop Streaming API
 - read/write stdin/stdout
 - mapper.py, reducer.py, wc, awk, perl, grep, ...
 - can write results directly to HBase (with Java/Jython)
- Map-Reduce 75GB in 5 minutes
 - with Java libraries it should be 2.5 times faster (memory allocation savings)

Cluster Summary (Heap Size is 214.81 MB/3.56 GB)

Ma	ning ap sks	Running Reduce Tasks	Total Submissions	Nodes	Occupied Map Slots	Occupied Reduce Slots	Reserved Map Slots	Reserved Reduce Slots	Map Task Capacity	Reduce Task Capacity	Avg. Tasks/Node	Blacklisted Nodes	Excluded Nodes
0		0	58	10	0	0	0	0	60	60	12.00	0	0

Kind	% Complete	Num Tasks	Pending	Running	Complete	Killed	Failed/Killed Task Attempts
map	100.00%	709	0	0	709	0	0/25
reduce	100.00%	1	0	0	1	0	0/0

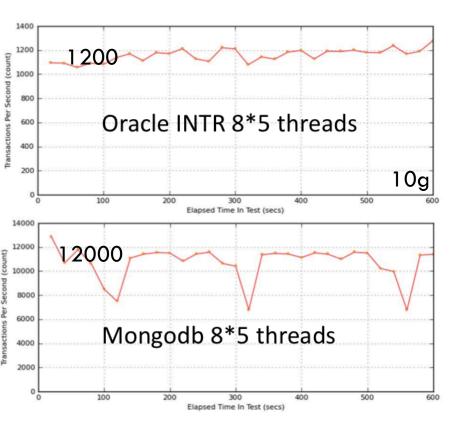
DQ2 Tracing

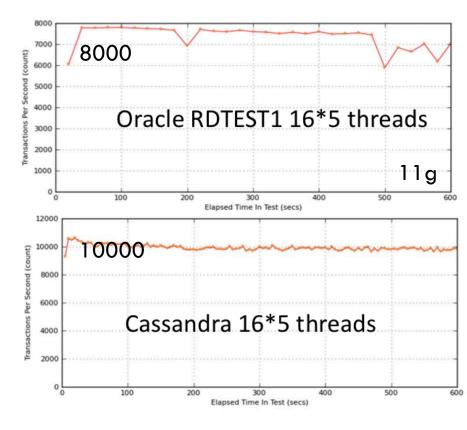
(Donal Zang, Vincent Garonne)

- Record relevant information about dataset/file access
 - type, status, local site, remote site, file size, time, usrdn,...
 - DQ2Clients (dq2-get/put), Panda Pilot, Ganga
 - Traces can be analyzed for many purposes
 - Data Popularity
 - DQ2 simulations
 - User behavior analysis
 - DQ2 system monitoring (including failures)
 - □ ~5 million traces every day
- Problem
 - All use cases need some sort of aggregation
 - Aggregation metrics can by very dynamic
 - On Oracle tens of minutes to hours with heavy IO
 - Can we go realtime?

(Donal Zang, Vincent Garonne)

- Write performance tests
 - \square row-by-row insertion (~3KB/row)

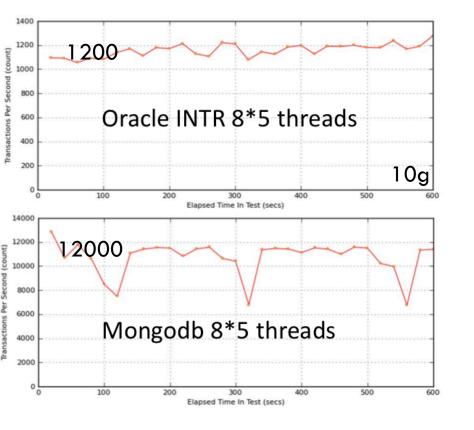


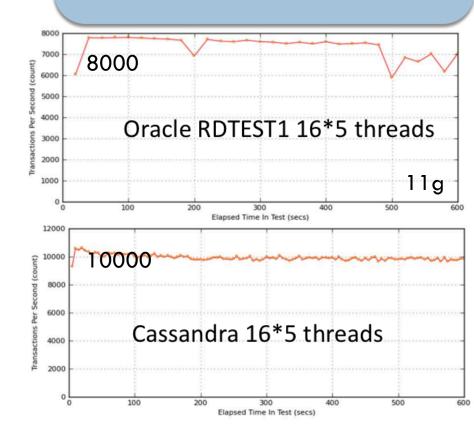


(Donal Zang, Vincent Garonne)

- Write performance tests
 - \square row-by-row insertion (~3KB/ \square

Oracle NoSQL (native Java, 1,5,16 threads) ~4200





(Donal Zang, Vincent Garonne)

15

- Query results
 - One months traces (90M rows, 34GB)
 - Query 1: Total number of traces
 - Query 2: For each '%GROUPDISK%' endpoint, get the "Total Traces", "Write Traces", "Total Users"

Query	Oracle INTR	Oracle RDTEST1	Oracle RDTEST1 cache	Oracle production ADCR	Cassandra
Query 1	39 seconds	30 seconds	~1 second	1.14 hour	2.2 minutes
Query 2	47 seconds	30 seconds	~3 seconds	>5 hours	28.3 minutes

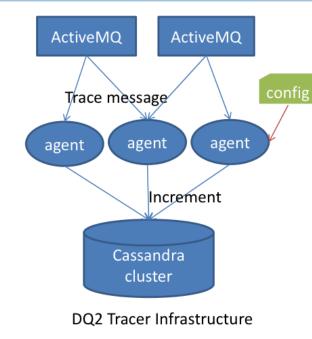
Parallel IO (not allowed in production)

Random hash partition,
Good for durability and
spread, bad for range query

(Donal Zang, Vincent Garonne)

- Exploit fast inserts to
 - a) build indexes in data model
 - >10k updates per second
 - b) use distributed counters

```
t_index = {
    '2011052017:remoteSite:eventType':{
        'CERN-PROD_DATADISK:put_sm:1304514380628696' : 23444,
        'CERN-PROD_DATADISK:get:1304514380628697' : 32232,
        'CERN-PROD_GROUPDISK:put_sm:1304514380628696' : 43122,
        ...
    },
    ....
},
```



- Query example
 - count and sum of traces grouped by site and eventType in a specific time period

Oracle(production, ADCR)	Cassandra(use CF as index)
48 minutes (query t_traces)	10 seconds (query the index)

DQ2 Popularity and Simulation

(Thomas Beermann, Angelos Molfetas, Martin Barisits)

- Evaluate dataset popularity service on MongoDB
 - Has to join very large tables in Oracles
 - Queries take hours and summarisation is pre-defined
 → try a MapReduce approach
- Basic problem became apparent soon
 - MongoDB, due to its locking scheme, only supports very limited MapReduce functionality
 - Essentially unfit for this use case
- However, MongoDB seems better suited as an application backend
 - As a substitute, e.g., for MySQL, due to schema-less design
- Use it for DQ2 Simulation
 - Optimise storage models based on historical traces and popularity
 - Backend to a persistent steady state Genetic Algorithm
 - Blazingly fast and easy to work with due to "native" mapping of data structures
 - MongoDB locking not an issue for this use case
 - Lack of transactional support not problematic for this use case

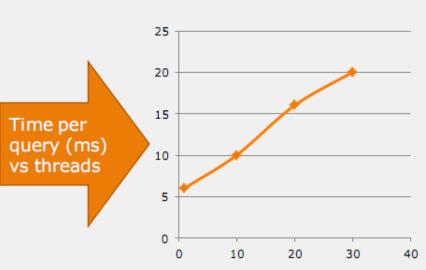
PanDA Monitoring

- Offload Oracle for PanDA log file analysis
 - Efficient support for time series and range queries essential
 - ~10Hz production write rate; reduced from previous heavier usage because of scalability problems
 - excessive Oracle load due to write rate
 - underutilizing the logger
 - a very convenient means of logging incidents, alarms, errors, warnings, informational logging
 - Heavily used by Panda server for logging its operations, reporting brokerage and PD2P decisions, ...
- Two independent evaluations
 - Cassandra and SimpleDB

PanDA Monitoring (Cassandra)

- Same approach as DQ2 Tracer
 - Exploit fast writes with composite indexes
 - e.g., PRODUSERNAME+JOBDEFID+DATE
- Saturated client machine (30 threads)
 - 3-node Cassandra cluster was able to serve 1500 random requests per second
 - □ ~2.5 times improvement to current Oracle solution
- Random query tests (10k PanDA jobs)
 - □ Oracle: ~100ms/request, regardless number of threads (1-30)
- Now in production with web frontend

Number of threads	Time per query	Server load: queries/sec
1	6ms	167
10	10ms	1000
20	16ms	1250
30	20ms	1500



PanDA Monitoring (SimpleDB)

- SimpleDB is a cloud-based storage from Amazon
 - AWS pay-as-you-go for traffic and storage, first 1GB/month free
- Key-Value pairs are stored within domains
 - domain equals machine on AWS (implicit sharding)
 - 1 billion attributes, 10GB, no item limit, 256 attributes per item, 1024 length, automatically indexed, string
- Automated extraction of Panda job and file data from Oracle and upload to S3 in operation since January 2011
 - SDB content: 131GB, 231M items, 34 domains
- SimpleDB domains sit in a specific AWS region
 - SDB direct write from CERN: ~300ms/write
 - SDB direct write from Virginia EC2: 70-100ms/write
- Heavily optimized for well-indexed and selective queries
 - Aggregation, summarisation lacking, bulk queries slow

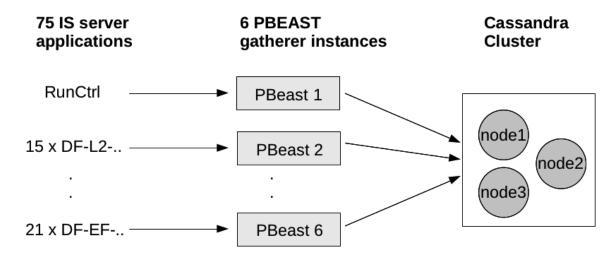
PanDA Monitoring (SimpleDB)

- Best solution is actually
 - Python scripts mapreducing flat CSV files on EC2
 - Fraction of a second to produce any number of summaries
- The June bill
 - Large EC2 instance: ~\$100
 - \square S3, 950GB, negligible request counts: \sim \$130
 - Data transfer: ~\$80
 - SimpleDB storage, 88GB: ~\$20
 - □ SimpleDB compute hours, 6000 hours: ~\$830
- Conclusion
 - Real money, but very doable if cost/benefit ratio is good
 - Very little, if measured against fractional FTEs supporting in-house
 - However, still too many feature set limitations

TDAQ Online Monitoring

(Alexandru Dan Sioce)

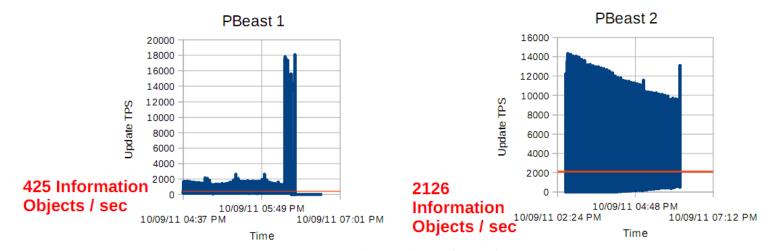
- Trigger and Data Acquisition (TDAQ)
 - suite of 30'000 applications
 - running on 3'000 machines
 - operate on the physics data, after detector, before disk
 - very high rate monitoring (~2500 Hertz)
 - until now, all this monitoring data was lost
 - need to store last n events with details, to investigate problems
- 3-Node Cassandra backend (4GB RAM, 4 Cores)

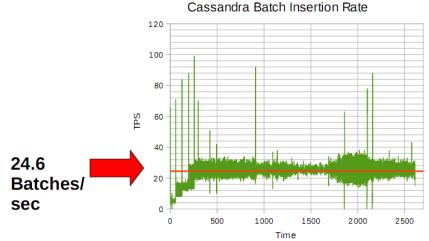


TDAQ Online Monitoring

(Alexandru Dan Sioce)

- □ 24.6 batches/sec with 226KB/batch ~ 5.6 MB/sec
- Very good at taking in time series data coming at various rates with occasional bursts





What do we need?

- Logging and monitoring
 - High write rates
- Data analytics
 - Complex computations over lots of data
- Content and Summary retrieval
 - Fast lookup
- Application backend
 - Low latency

What do we need?

- Logging and monitoring
 - High write rates
 - → Cassandra, MongoDB, HBase
- Data analytics
 - Complex computations over lots of data
 - → HBase, MongoDB, Cassandra
- Content and Summary retrieval
 - Fast lookup
 - → Cassandra, MongoDB, HBase, SimpleDB
- Application backend
 - Low latency, schema-less design, "native" data structures
 - → Cassandra, MongoDB

What do we need?

□ Logging and monitoring
 □ High write rates
 → Cassandra, MengeDB, HBase
 □ Data analytics
 □ Complex computations over lots of data
 → HBase, MongeDB, Cassandra
 □ Content and Summary retrieval
 □ Fast lookup
 → Cassandra, MongeDB, HBase, SimpleDB

- Application backend
 - Low latency, schema-less design, "native" data structures
 Cassandra, MongoDB

But what about...

Hypertable, Riak, Voldemort, Redis, CouchDB, ...

Probably good choices for given use cases as well, but

- 1. we have no operational experience with them (except some corner-case trials)
- 2. we went for the products with the largest market-share, most active communities, and most reliable roadmaps over the next years
- Didn't have time to try everything
- Highly evolving area
 - e.g., MongoDB locking&MapReduce apparently solved in recently released versions
 - we have to stay flexible → Backend-independent data formats if possible!

Recommendations

- CERN should actively support structured storage systems with hardware, development and FTEs
 - But not by providing a common shared DB service for everyone, like with Oracle
 - If you want this, then you haven't understood these systems
 - Instead, offer choice:
 - → CERN hosts a pool of barebone nodes, and experiments request nodes
 - → Product experts (FTEs) offer help
 - e.g. "PanDA Monitoring needs 4 Cassandra Nodes" or "DQ2 needs 4 Hadoop Datanodes"
- Why can this work? (i.e., Google, Facebook, Amazon, Twitter, Yahoo... do it like this)
 - The architecture of these systems does not require "online administration with a DBA"
 - If something is broken, take out the faulty node and replace it. Nodes resync automatically.
- Work required?
 - Construction of images to be deployed on a barebone machine by experts
 - e.g., Hadoop Namenode, Hadoop DataTaskNode, Cassandra Node
 - no special requirements on the hardware; no virtual machines; not necessarily SLC
 - images (even puppet modules) exist already (e.g., Cloudera), commercial support available
 - Deployment of a monitoring dashboard for these nodes
 - application specific dashboards exist already from/for each product
 - system dashboard already hosted by CERN (nagios, lemon)
 - No excessive operational support needed except
 - Basic product maintenance (new versions, cluster restarts, firewalling, etc...)
 - Wipe and reinstall of a faulty node with an image
 - Hardware replacement of faulty hardware

Recommendations

One size DOES NOT fit all

- Too many different use cases
- Structured storage systems are designed to keep ongoing operational cost low
- Proper images+dashboards could be done within weeks

Two major products (game changers) should be supported

All of these systems can do efficient key-value lookups,
 but only Hadoop and Cassandra scale out without explicit partitioning/sharding

■ Hadoop HDFS + HBase

- Large-scale analytics (data aggregation, correlation, and summarisation)
- Distributed storage

Cassandra

- Time-based data (log file analysis, time series)
- Low-latency application backend

We need this technology!
(And many others probably as well.)