
(DISTRIBUTED) STRUCTURED STORAGE
FOR ATLAS

WLCG Database TEG

Mario Lassnig
CERN PH-ADP-CO/DQ2

mario.lassnig@cern.ch

ph-adp-ddm-lab@cern.ch

Preface: Say No to NoSQL

¨  Buzzword term to annoy RDBMS people
¤ Correct CS term: (Distributed) Structured Storage
¤  (many of them support SQL-like queries anyway!)

¨  Essentially two different models
¤  “Big Data”-capable (=linear scale out) vs. the rest

¨  And then it’s “feature matrix mix’n’match”
¤ CAP Theorem

n  Consistency – Availability – Partition tolerance
¤ ACID vs BASE

n  Basically available - Soft state – Eventual consistency
n  ZERO(W) – ANY(W) – ONE(RW) – QUORUM(RW) – ALL(RW)

¤ Query vs MapReduce

2

Overview

¨  ATLAS relies heavily on Oracle
¤  We have many use cases that put a high load on Oracle

n  Much of this load is constantly increasing requiring constant attention to optimisation in order to scale
n  Requires schema denormalisation, relaxation of constraints, service splitting, …
n  Oracle query optimiser does not always yield optimum execution plan requiring manual tuning
n  Oracle query plans are not always stable requiring manual interventions

¤  Costly for developers, DBAs, DB experts, and hardware

¨  Structured Storage Initiative by the DQ2 Team, soon followed by PanDA and TDAQ
¤  OLAP use cases: Query and compute n partitions for historical data aggregation and summarisation,

with lookups from m other tables
¤  Offload OLAP use cases from Oracle to the “right tool for the job”

¨  So, no, we don’t want to get rid of Oracle for OLTP, we need it, but…
¤  Structured storage is a good solution for our many OLAP cases
¤  Reduce (human and machine) workload
¤  Get results faster: non-invasive parallel data crunching
¤  No need to buy special hardware
¤  Community support and commercial support available
¤  Operational cost is very low, so it’s almost a free lunch

Again:
Structured storage is not and never has been “versus Oracle”,

but to “complement Oracle”!

3

Some examples

¨  Document Stores
¤  Semi structured data (schema=data)
¤  e.g., CouchDB, MongoDB

¨  Graph Databases
¤  Index free adjacency of data
¤  e.g., Neo4j

¨  Key-Value
¤  Schema-less, can be sorted or unsorted
¤  e.g., BigTable, SimpleDB, memcachedb, Kyoto Cabinet, Dynamo,

Cassandra, Voldemort, Berkeley DB (=Oracle NoSQL)
¨  Tabular Databases

¤  Multidimensional sorted maps
¤  e.g., BigTable, HBase

¨  Data Structure Stores
¤  More complex datatypes than strings and numbers
¤  e.g., Redis, MongoDB

4

Objective

¨  Evaluate as many different products as possible that can match ATLAS use
cases, subject to
¤  Development time
¤  Operational cost
¤  Support (commercial and community)
¤  Performance characteristics

¨  So far, ATLAS has experience with
¤  Oracle (DQ2, PanDA)
¤  Hadoop HDFS+HBase (DQ2)
¤  Cassandra (DQ2, PanDA, TDAQ)
¤  MongoDB (DQ2)
¤  SimpleDB (PanDA)

Important:
Most of us are not database administrators/experts.

We need to use the right tool for a given use case under time constraints.

5

Our project experiences
6

¨  DQ2 Accounting
¨  DQ2 Tracing
¨  DQ2 Popularity and Simulation
¨  DQ2 Log File Analysis
¨  PanDA Monitoring
¨  TDAQ Online Monitoring

DQ2 Accounting
(Mario Lassnig, Lisa Azzurra Chinzer)

¨  Break down usage of ATLAS data in DQ2
¤  Free-form querying with history (difficult to predefine views)
¤ Metadata based

{nbfiles, bytes} := {project=data10*,datatype=ESD,location=CERN*}!

¤ Constant updates to the data, new keys, bulk operations…
¤  Immense cost on Oracle

n  Developer time, DBA time, Hardware

¨  While we developed the Oracle solution, we evaluated
other possible database backends
¤ MongoDB, HBase
¤ Can we do better?

7

DQ2 Accounting (MongoDB)
(Mario Lassnig, Lisa Azzurra Chinzer)

¨  Option 1:
Keep source data in MongoDB and
MapReduce into summary
¤  Migrate catalogues: rich data model
¤  However, MapReduce problematic

n  Apparently addressed in Mongo 2.x
n  Locking, concurrency, sharding

¨  Option 2:
Only summary to MongoDB
¤  Calculate summary in Oracle and write

summary to MongoDB
¤  Much better than Oracle’s star schema

summary

¨  Remarks
¤  MongoDB took all data linearly
¤  Full durability: 2500 upserts/sec
¤  Relaxed durability: 6000 upserts/sec
¤  Keeps all indexes in memory

n  40 mio datasets fully indexed ~ 2GB
¤  By now (November), even the Oracle

summarization breaks sometimes
n  Locked statistics, and all other kinds of magic

8

DQ2 Accounting (HBase)
(Mario Lassnig, Lisa Azzurra Chinzer)

¨  Current state: try to do it with Hadoop HBase
¤  Proper MapReduce support, efficient data handling
¤  Runs on clustered HDFS

¨  HBase is a database for multidimensional sparse columns with versioned cells
¤  Not quite that obvious like the hashtables for MongoDB? Depends…
¤  ColumnFamilies are a set of (possibly overlapping) columns that “belong together”

(i.e., in the relational world this would be a view)

Relational to non-relational

Row / Cell structure

9

DQ2 Accounting (HBase)
(Mario Lassnig, Lisa Azzurra Chinzer)

¨  Current state
¤  DDMLAB-hosted 10 node Hadoop cluster (with no special optimisation)
¤  Full migration of Oracle content (400M rows, 20GB) into HBase data model (20M rows,

24GB): 2h 40m
¤  MapReduce once over data: 40 mins (random reads ~4K blocks, ~2.5MB/sec per node)

n  HDFS replication factor 4… (40*4)/60 (replication factor to a full 10, then MapReduce in 15min)
n  Compared with Oracle: 5-6 hours, if it finishes at all…
n  Can do all accounting summaries in one MapReduce run

¨  Still ToDo
¤  One-way synchronisation from Oracle to HBase

n  Not trivial
n  How to get data out of Oracle at the required Hertz and in proper order?
n  (Accounting not a realtime service, perhaps just dump the data once per day?)

¤  Summary retrieval
n  Trivial

¤  Ad-hoc queries need a slightly different data model than the MapReduce one
n  otherwise you would have to MapReduce ad-hoc, which requires some more machines

10

DQ2 Log Analysis (HDFS)
(Vincent Garonne, Mario Lassnig)

11

¨  Map-Reducing CSV files on Hadoop HDFS
¤  Dump table from Oracle (DQ2 Traces)
¤  Copy log files to HDFS (DQ2 Apache Logs)

¨  Use Hadoop Streaming API
¤  read/write stdin/stdout

n  mapper.py, reducer.py, wc, awk, perl, grep, ...
¤  can write results directly to HBase (with Java/Jython)

¨  Map-Reduce 75GB in 5 minutes
¤  with Java libraries it should be 2.5 times faster (memory allocation savings)

DQ2 Tracing
(Donal Zang, Vincent Garonne)

¨  Record relevant information about dataset/file access
¤  type, status, local site, remote site, file size, time, usrdn,…
¤  DQ2Clients (dq2-get/put), Panda Pilot, Ganga
¤  Traces can be analyzed for many purposes

n  Data Popularity
n  DQ2 simulations
n  User behavior analysis
n  DQ2 system monitoring (including failures)

¤  ~5 million traces every day

¨  Problem
¤  All use cases need some sort of aggregation
¤  Aggregation metrics can by very dynamic
¤  On Oracle tens of minutes to hours with heavy IO
¤  Can we go realtime?

12

DQ2 Tracing (Cassandra)
(Donal Zang, Vincent Garonne)

¨  Write performance tests
¤  row-by-row insertion (~3KB/row)

13

1200

12000

8000

10000

10g 11g

DQ2 Tracing (Cassandra)
(Donal Zang, Vincent Garonne)

¨  Write performance tests
¤  row-by-row insertion (~3KB/row)

14

1200

12000

8000

10000

10g 11g

Oracle NoSQL
(native Java, 1,5,16 threads)

~4200

DQ2 Tracing (Cassandra)
(Donal Zang, Vincent Garonne)

¨  Query results
¤  One months traces (90M rows, 34GB)
¤  Query 1: Total number of traces
¤  Query 2: For each '%GROUPDISK%‘ endpoint, get the "Total Traces“, "Write Traces“, "Total Users”

Parallel IO
(not allowed in production)

Random hash partition,
Good for durability and

spread, bad for range query

15

DQ2 Tracing (Cassandra)
(Donal Zang, Vincent Garonne)

¨  Exploit fast inserts to
¤  a) build indexes in data model

n  >10k updates per second
¤  b) use distributed counters

¨  Query example
¤  count and sum of traces grouped by site and eventType in a

specific time period

16

DQ2 Popularity and Simulation
(Thomas Beermann, Angelos Molfetas, Martin Barisits)

¨  Evaluate dataset popularity service on MongoDB
¤  Has to join very large tables in Oracles
¤  Queries take hours and summarisation is pre-defined

à try a MapReduce approach
¨  Basic problem became apparent soon

¤  MongoDB, due to its locking scheme, only supports very limited MapReduce
functionality

¤  Essentially unfit for this use case
¨  However, MongoDB seems better suited as an application backend

¤  As a substitute, e.g., for MySQL, due to schema-less design
¨  Use it for DQ2 Simulation

¤  Optimise storage models based on historical traces and popularity
¤  Backend to a persistent steady state Genetic Algorithm
¤  Blazingly fast and easy to work with due to “native” mapping of data structures
¤  MongoDB locking not an issue for this use case
¤  Lack of transactional support not problematic for this use case

17

PanDA Monitoring
(Maxim Potekhin, Torre Wenaus)

¨  Offload Oracle for PanDA log file analysis
¤  Efficient support for time series and range queries essential
¤ ~10Hz production write rate; reduced from previous heavier

usage because of scalability problems
¤  excessive Oracle load due to write rate
¤  underutilizing the logger

n  a very convenient means of logging incidents, alarms, errors,
warnings, informational logging

n  Heavily used by Panda server for logging its operations, reporting
brokerage and PD2P decisions, …

¨  Two independent evaluations
¤ Cassandra and SimpleDB

18

PanDA Monitoring (Cassandra)
(Maxim Potekhin, Torre Wenaus)

¨  Same approach as DQ2 Tracer
¤  Exploit fast writes with composite indexes
¤  e.g., PRODUSERNAME+JOBDEFID+DATE

¨  Saturated client machine (30 threads)
¤  3-node Cassandra cluster was able to serve 1500 random requests per second
¤  ~2.5 times improvement to current Oracle solution

¨  Random query tests (10k PanDA jobs)
¤  Oracle: ~100ms/request, regardless number of threads (1-30)

¨  Now in production with web frontend

19

PanDA Monitoring (SimpleDB)
(Maxim Potekhin, Torre Wenaus)

¨  SimpleDB is a cloud-based storage from Amazon
¤  AWS pay-as-you-go for traffic and storage, first 1GB/month free

¨  Key-Value pairs are stored within domains
¤  domain equals machine on AWS (implicit sharding)
¤  1billion attributes, 10GB, no item limit, 256 attributes per item, 1024 length,

automatically indexed, string
¨  Automated extraction of Panda job and file data from Oracle and upload

to S3 in operation since January 2011
¤  SDB content: 131GB, 231M items, 34 domains

¨  SimpleDB domains sit in a specific AWS region
¤  SDB direct write from CERN: ~300ms/write
¤  SDB direct write from Virginia EC2: 70-100ms/write

¨  Heavily optimized for well-indexed and selective queries
¤  Aggregation, summarisation lacking, bulk queries slow

20

PanDA Monitoring (SimpleDB)
(Maxim Potekhin, Torre Wenaus)

¨  Best solution is actually
¤  Python scripts mapreducing flat CSV files on EC2
¤  Fraction of a second to produce any number of summaries

¨  The June bill
¤  Large EC2 instance: ~$100
¤  S3, 950GB, negligible request counts: ~$130
¤  Data transfer: ~$80
¤  SimpleDB storage, 88GB: ~$20
¤  SimpleDB compute hours, 6000 hours: ~$830

¨  Conclusion
¤  Real money, but very doable if cost/benefit ratio is good
¤  Very little, if measured against fractional FTEs supporting in-house
¤  However, still too many feature set limitations

21

TDAQ Online Monitoring
(Alexandru Dan Sioce)

¨  Trigger and Data Acquisition (TDAQ)
¤  suite of 30’000 applications
¤  running on 3’000 machines
¤  operate on the physics data, after detector, before disk
¤  very high rate monitoring (~2500 Hertz)
¤  until now, all this monitoring data was lost
¤  need to store last n events with details, to investigate problems

¨  3-Node Cassandra backend (4GB RAM, 4 Cores)

22

TDAQ Online Monitoring
(Alexandru Dan Sioce)

¨  24.6 batches/sec with 226KB/batch ~ 5.6 MB/sec
¨  Very good at taking in time series data coming at various rates with occasional bursts

23

What do we need?

¨  Logging and monitoring
¤ High write rates

¨  Data analytics

¤ Complex computations over lots of data

¨  Content and Summary retrieval
¤  Fast lookup

¨  Application backend

¤  Low latency

24

What do we need?

¨  Logging and monitoring
¤ High write rates
à Cassandra, MongoDB, HBase

¨  Data analytics
¤ Complex computations over lots of data
à HBase, MongoDB, Cassandra

¨  Content and Summary retrieval
¤  Fast lookup
à Cassandra, MongoDB, HBase, SimpleDB

¨  Application backend
¤  Low latency, schema-less design, “native” data structures
à Cassandra, MongoDB

25

What do we need?

¨  Logging and monitoring
¤ High write rates
à Cassandra, MongoDB, HBase

¨  Data analytics
¤ Complex computations over lots of data
à HBase, MongoDB, Cassandra

¨  Content and Summary retrieval
¤  Fast lookup
à Cassandra, MongoDB, HBase, SimpleDB

¨  Application backend
¤  Low latency, schema-less design, “native” data structures
à Cassandra, MongoDB

With 1 writer
With Java

Only free up to 1GB/month,
Location-dependent

Limited MapReduce

26

No native MapReduce

But what about...

¨  Hypertable, Riak, Voldemort, Redis, CouchDB, ...

Probably good choices for given use cases as well, but

1. we have no operational experience with them
 (except some corner-case trials)

2. we went for the products with the largest
 market-share, most active communities, and
 most reliable roadmaps over the next years

¨  Didn’t have time to try everything
¨  Highly evolving area

¤  e.g., MongoDB locking&MapReduce apparently solved in recently released
versions

¤  we have to stay flexible à Backend-independent data formats if possible!

27

Recommendations

¨  CERN should actively support structured storage systems with hardware, development and FTEs
¤  But not by providing a common shared DB service for everyone, like with Oracle

n  If you want this, then you haven’t understood these systems
¤  Instead, offer choice:

à CERN hosts a pool of barebone nodes, and experiments request nodes
à Product experts (FTEs) offer help
n  e.g. “PanDA Monitoring needs 4 Cassandra Nodes” or “DQ2 needs 4 Hadoop Datanodes”

¨  Why can this work? (i.e., Google, Facebook, Amazon, Twitter, Yahoo... do it like this)
¤  The architecture of these systems does not require “online administration with a DBA”
¤  If something is broken, take out the faulty node and replace it. Nodes resync automatically.

¨  Work required ?
¤  Construction of images to be deployed on a barebone machine by experts

n  e.g., Hadoop Namenode, Hadoop DataTaskNode, Cassandra Node
n  no special requirements on the hardware; no virtual machines; not necessarily SLC
n  images (even puppet modules) exist already (e.g., Cloudera), commercial support available

¤  Deployment of a monitoring dashboard for these nodes
n  application specific dashboards exist already from/for each product
n  system dashboard already hosted by CERN (nagios, lemon)

¤  No excessive operational support needed except
n  Basic product maintenance (new versions, cluster restarts, firewalling, etc...)
n  Wipe and reinstall of a faulty node with an image
n  Hardware replacement of faulty hardware

28

Recommendations

¨  One size DOES NOT fit all
¤  Too many different use cases
¤  Structured storage systems are designed to keep ongoing operational cost low
¤  Proper images+dashboards could be done within weeks

¨  Two major products (game changers) should be supported
¤  All of these systems can do efficient key-value lookups,

but only Hadoop and Cassandra scale out without explicit partitioning/sharding

¤  Hadoop HDFS + HBase
n  Large-scale analytics (data aggregation, correlation, and summarisation)
n  Distributed storage

¤  Cassandra

n  Time-based data (log file analysis, time series)
n  Low-latency application backend

We need this technology!
(And many others probably as well.)

29

