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Preface: Say No to NoSQL 

¨  Buzzword term to annoy RDBMS people 
¤ Correct CS term: (Distributed) Structured Storage 
¤  (many of them support SQL-like queries anyway!) 

¨  Essentially two different models 
¤  “Big Data”-capable (=linear scale out) vs. the rest 

¨  And then it’s “feature matrix mix’n’match” 
¤ CAP Theorem 

n  Consistency – Availability – Partition tolerance 
¤ ACID vs BASE 

n  Basically available - Soft state – Eventual consistency 
n  ZERO(W) – ANY(W) – ONE(RW) – QUORUM(RW) – ALL(RW) 

¤ Query vs MapReduce 
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Overview 

¨  ATLAS relies heavily on Oracle 
¤  We have many use cases that put a high load on Oracle 

n  Much of this load is constantly increasing requiring constant attention to optimisation in order to scale 
n  Requires schema denormalisation, relaxation of constraints, service splitting, … 
n  Oracle query optimiser does not always yield optimum execution plan requiring manual tuning 
n  Oracle query plans are not always stable requiring manual interventions  

¤  Costly for developers, DBAs, DB experts, and hardware 

¨  Structured Storage Initiative by the DQ2 Team, soon followed by PanDA and TDAQ 
¤  OLAP use cases: Query and compute n partitions for historical data aggregation and summarisation, 

with lookups from m other tables 
¤  Offload OLAP use cases from Oracle to the “right tool for the job” 

¨  So, no, we don’t want to get rid of Oracle for OLTP, we need it, but… 
¤  Structured storage is a good solution for our many OLAP cases 
¤  Reduce (human and machine) workload 
¤  Get results faster: non-invasive parallel data crunching 
¤  No need to buy special hardware 
¤  Community support and commercial support available 
¤  Operational cost is very low, so it’s almost a free lunch 

 

Again: 
Structured storage is not and never has been “versus Oracle”, 

but to “complement Oracle”! 
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Some examples 

¨  Document Stores 
¤  Semi structured data (schema=data) 
¤  e.g., CouchDB, MongoDB 

¨  Graph Databases 
¤  Index free adjacency of data 
¤  e.g., Neo4j 

¨  Key-Value 
¤  Schema-less, can be sorted or unsorted 
¤  e.g., BigTable, SimpleDB, memcachedb, Kyoto Cabinet, Dynamo, 

Cassandra, Voldemort, Berkeley DB (=Oracle NoSQL) 
¨  Tabular Databases 

¤  Multidimensional sorted maps 
¤  e.g., BigTable, HBase 

¨  Data Structure Stores 
¤  More complex datatypes than strings and numbers 
¤  e.g., Redis, MongoDB 
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Objective 

¨  Evaluate as many different products as possible that can match ATLAS use 
cases, subject to 
¤  Development time 
¤  Operational cost 
¤  Support (commercial and community) 
¤  Performance characteristics 

¨  So far, ATLAS has experience with 
¤  Oracle (DQ2, PanDA) 
¤  Hadoop HDFS+HBase (DQ2) 
¤  Cassandra (DQ2, PanDA, TDAQ) 
¤  MongoDB (DQ2) 
¤  SimpleDB (PanDA) 

Important: 
Most of us are not database administrators/experts. 

We need to use the right tool for a given use case under time constraints.  
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Our project experiences 
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¨  DQ2 Accounting 
¨  DQ2 Tracing 
¨  DQ2 Popularity and Simulation 
¨  DQ2 Log File Analysis 
¨  PanDA Monitoring 
¨  TDAQ Online Monitoring 



DQ2 Accounting 
(Mario Lassnig, Lisa Azzurra Chinzer) 

¨  Break down usage of ATLAS data in DQ2 
¤  Free-form querying with history (difficult to predefine views) 
¤ Metadata based 

{nbfiles, bytes} := {project=data10*,datatype=ESD,location=CERN*}!

¤ Constant updates to the data, new keys, bulk operations… 
¤  Immense cost on Oracle 

n  Developer time, DBA time, Hardware 

¨  While we developed the Oracle solution, we evaluated 
other possible database backends 
¤ MongoDB, HBase 
¤ Can we do better? 
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DQ2 Accounting (MongoDB) 
(Mario Lassnig, Lisa Azzurra Chinzer) 

¨  Option 1: 
Keep source data in MongoDB and 
MapReduce into summary 
¤  Migrate catalogues: rich data model 
¤  However, MapReduce problematic 

n  Apparently addressed in Mongo 2.x 
n  Locking, concurrency, sharding 

¨  Option 2: 
Only summary to MongoDB 
¤  Calculate summary in Oracle and write 

summary to MongoDB 
¤  Much better than Oracle’s star schema 

summary 

¨  Remarks 
¤  MongoDB took all data linearly 
¤  Full durability: 2500 upserts/sec 
¤  Relaxed durability: 6000 upserts/sec 
¤  Keeps all indexes in memory 

n  40 mio datasets fully indexed ~ 2GB 
¤  By now (November), even the Oracle 

summarization breaks sometimes 
n  Locked statistics, and all other kinds of magic 
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DQ2 Accounting (HBase) 
(Mario Lassnig, Lisa Azzurra Chinzer) 

¨  Current state: try to do it with Hadoop HBase 
¤  Proper MapReduce support, efficient data handling 
¤  Runs on clustered HDFS 

¨  HBase is a database for multidimensional sparse columns with versioned cells 
¤  Not quite that obvious like the hashtables for MongoDB? Depends… 
¤  ColumnFamilies are a set of (possibly overlapping) columns that “belong together” 

(i.e., in the relational world this would be a view) 

Relational to non-relational 

Row / Cell structure 
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DQ2 Accounting (HBase) 
(Mario Lassnig, Lisa Azzurra Chinzer) 

¨  Current state 
¤  DDMLAB-hosted 10 node Hadoop cluster (with no special optimisation) 
¤  Full migration of Oracle content (400M rows, 20GB) into HBase data model (20M rows, 

24GB): 2h 40m 
¤  MapReduce once over data: 40 mins (random reads ~4K blocks, ~2.5MB/sec per node) 

n  HDFS replication factor 4… (40*4)/60 (replication factor to a full 10, then MapReduce in 15min) 
n  Compared with Oracle: 5-6 hours, if it finishes at all… 
n  Can do all accounting summaries in one MapReduce run 

¨  Still ToDo 
¤  One-way synchronisation from Oracle to HBase 

n  Not trivial 
n  How to get data out of Oracle at the required Hertz and in proper order? 
n  (Accounting not a realtime service, perhaps just dump the data once per day?) 

¤  Summary retrieval 
n  Trivial 

¤  Ad-hoc queries need a slightly different data model than the MapReduce one 
n  otherwise you would have to MapReduce ad-hoc, which requires some more machines 
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DQ2 Log Analysis (HDFS) 
(Vincent Garonne, Mario Lassnig) 
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¨  Map-Reducing CSV files on Hadoop HDFS 
¤  Dump table from Oracle (DQ2 Traces) 
¤  Copy log files to HDFS (DQ2 Apache Logs) 

¨  Use Hadoop Streaming API 
¤  read/write stdin/stdout 

n  mapper.py, reducer.py, wc, awk, perl, grep, ... 
¤  can write results directly to HBase (with Java/Jython) 

¨  Map-Reduce 75GB in 5 minutes 
¤  with Java libraries it should be 2.5 times faster (memory allocation savings) 



DQ2 Tracing 
(Donal Zang, Vincent Garonne) 

¨  Record relevant information about dataset/file access 
¤  type, status, local site, remote site, file size, time, usrdn,… 
¤  DQ2Clients (dq2-get/put), Panda Pilot, Ganga 
¤  Traces can be analyzed for many purposes 

n  Data Popularity 
n  DQ2 simulations 
n  User behavior analysis 
n  DQ2 system monitoring (including failures) 

¤  ~5 million traces every day 

¨  Problem 
¤  All use cases need some sort of aggregation 
¤  Aggregation metrics can by very dynamic 
¤  On Oracle tens of minutes to hours with heavy IO 
¤  Can we go realtime? 
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DQ2 Tracing (Cassandra) 
(Donal Zang, Vincent Garonne) 

¨  Write performance tests 
¤  row-by-row insertion (~3KB/row) 
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DQ2 Tracing (Cassandra) 
(Donal Zang, Vincent Garonne) 

¨  Write performance tests 
¤  row-by-row insertion (~3KB/row) 
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DQ2 Tracing (Cassandra) 
(Donal Zang, Vincent Garonne) 

¨  Query results 
¤  One months traces (90M rows, 34GB) 
¤  Query 1: Total number of traces 
¤  Query 2: For each '%GROUPDISK%‘ endpoint, get the "Total Traces“, "Write Traces“, "Total Users” 

Parallel IO 
(not allowed in production) 

Random hash partition, 
Good for durability and 

spread, bad for range query 
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DQ2 Tracing (Cassandra) 
(Donal Zang, Vincent Garonne) 

¨  Exploit fast inserts to 
¤  a) build indexes in data model 

n  >10k updates per second 
¤  b) use distributed counters 

 
 
 

¨  Query example 
¤  count and sum of traces grouped by site and eventType in a 

specific time period 
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DQ2 Popularity and Simulation 
(Thomas Beermann, Angelos Molfetas, Martin Barisits) 

¨  Evaluate dataset popularity service on MongoDB 
¤  Has to join very large tables in Oracles 
¤  Queries take hours and summarisation is pre-defined 

à try a MapReduce approach 
¨  Basic problem became apparent soon 

¤  MongoDB, due to its locking scheme, only supports very limited MapReduce 
functionality 

¤  Essentially unfit for this use case 
¨  However, MongoDB seems better suited as an application backend 

¤  As a substitute, e.g., for MySQL, due to schema-less design 
¨  Use it for DQ2 Simulation 

¤  Optimise storage models based on historical traces and popularity 
¤  Backend to a persistent steady state Genetic Algorithm 
¤  Blazingly fast and easy to work with due to “native” mapping of data structures 
¤  MongoDB locking not an issue for this use case 
¤  Lack of transactional support not problematic for this use case 
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PanDA Monitoring 
(Maxim Potekhin, Torre Wenaus) 

¨  Offload Oracle for PanDA log file analysis 
¤  Efficient support for time series and range queries essential 
¤ ~10Hz production write rate; reduced from previous heavier 

usage because of scalability problems 
¤  excessive Oracle load due to write rate 
¤  underutilizing the logger 

n  a very convenient means of logging incidents, alarms, errors, 
warnings, informational logging 

n  Heavily used by Panda server for logging its operations, reporting 
brokerage and PD2P decisions, … 

¨  Two independent evaluations 
¤ Cassandra and SimpleDB 
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PanDA Monitoring (Cassandra) 
(Maxim Potekhin, Torre Wenaus) 

¨  Same approach as DQ2 Tracer 
¤  Exploit fast writes with composite indexes 
¤  e.g., PRODUSERNAME+JOBDEFID+DATE 

¨  Saturated client machine (30 threads) 
¤  3-node Cassandra cluster was able to serve 1500 random requests per second 
¤  ~2.5 times improvement to current Oracle solution 

¨  Random query tests (10k PanDA jobs) 
¤  Oracle: ~100ms/request, regardless number of threads (1-30) 

¨  Now in production with web frontend 
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PanDA Monitoring (SimpleDB) 
(Maxim Potekhin, Torre Wenaus) 

¨  SimpleDB is a cloud-based storage from Amazon 
¤  AWS pay-as-you-go for traffic and storage, first 1GB/month free 

¨  Key-Value pairs are stored within domains 
¤  domain equals machine on AWS (implicit sharding) 
¤  1billion attributes, 10GB, no item limit, 256 attributes per item, 1024 length, 

automatically indexed, string 
¨  Automated extraction of Panda job and file data from Oracle and upload 

to S3 in operation since January 2011 
¤   SDB content: 131GB, 231M items, 34 domains 

¨  SimpleDB domains sit in a specific AWS region 
¤  SDB direct write from CERN: ~300ms/write 
¤  SDB direct write from Virginia EC2: 70-100ms/write 

¨  Heavily optimized for well-indexed and selective queries 
¤  Aggregation, summarisation lacking, bulk queries slow 
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PanDA Monitoring (SimpleDB) 
(Maxim Potekhin, Torre Wenaus) 

¨  Best solution is actually 
¤  Python scripts mapreducing flat CSV files on EC2 
¤  Fraction of a second to produce any number of summaries 

¨  The June bill 
¤  Large EC2 instance: ~$100 
¤  S3, 950GB, negligible request counts: ~$130 
¤  Data transfer: ~$80 
¤  SimpleDB storage, 88GB: ~$20 
¤  SimpleDB compute hours, 6000 hours: ~$830 

¨  Conclusion 
¤  Real money, but very doable if cost/benefit ratio is good 
¤  Very little, if measured against fractional FTEs supporting in-house 
¤  However, still too many feature set limitations 
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TDAQ Online Monitoring 
(Alexandru Dan Sioce) 

¨  Trigger and Data Acquisition (TDAQ) 
¤  suite of 30’000 applications 
¤  running on 3’000 machines 
¤  operate on the physics data, after detector, before disk 
¤  very high rate monitoring (~2500 Hertz) 
¤  until now, all this monitoring data was lost 
¤  need to store last n events with details, to investigate problems 

¨  3-Node Cassandra backend (4GB RAM, 4 Cores) 
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TDAQ Online Monitoring 
(Alexandru Dan Sioce) 

¨  24.6 batches/sec with 226KB/batch ~ 5.6 MB/sec 
¨  Very good at taking in time series data coming at various rates with occasional bursts 
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What do we need? 

¨  Logging and monitoring 
¤ High write rates 

 
¨  Data analytics 

¤ Complex computations over lots of data 
 

¨  Content and Summary retrieval 
¤  Fast lookup 

 
¨  Application backend 

¤  Low latency 
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What do we need? 

¨  Logging and monitoring 
¤ High write rates 
à Cassandra, MongoDB, HBase 

¨  Data analytics 
¤ Complex computations over lots of data 
à HBase, MongoDB, Cassandra 

¨  Content and Summary retrieval 
¤  Fast lookup 
à Cassandra, MongoDB, HBase, SimpleDB 

¨  Application backend 
¤  Low latency, schema-less design, “native” data structures 
à Cassandra, MongoDB 
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What do we need? 

¨  Logging and monitoring 
¤ High write rates 
à Cassandra, MongoDB, HBase 

¨  Data analytics 
¤ Complex computations over lots of data 
à HBase, MongoDB, Cassandra 

¨  Content and Summary retrieval 
¤  Fast lookup 
à Cassandra, MongoDB, HBase, SimpleDB 

¨  Application backend 
¤  Low latency, schema-less design, “native” data structures 
à Cassandra, MongoDB 

With 1 writer 
With Java 

Only free up to 1GB/month, 
Location-dependent 

Limited MapReduce 
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But what about... 

¨  Hypertable, Riak, Voldemort, Redis, CouchDB, ... 
 
Probably good choices for given use cases as well, but 
 
1. we have no operational experience with them 
    (except some corner-case trials) 
 
2. we went for the products with the largest 
    market-share, most active communities, and 
    most reliable roadmaps over the next years 
 

¨  Didn’t have time to try everything 
¨  Highly evolving area 

¤  e.g., MongoDB locking&MapReduce apparently solved in recently released 
versions 

¤  we have to stay flexible à Backend-independent data formats if possible! 
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Recommendations 

¨  CERN should actively support structured storage systems with hardware, development and FTEs 
¤  But not by providing a common shared DB service for everyone, like with Oracle 

n  If you want this, then you haven’t understood these systems 
¤  Instead, offer choice: 

à CERN hosts a pool of barebone nodes, and experiments request nodes 
à Product experts (FTEs) offer help 
n  e.g. “PanDA Monitoring needs 4 Cassandra Nodes” or “DQ2 needs 4 Hadoop Datanodes” 

¨  Why can this work? (i.e., Google, Facebook, Amazon, Twitter, Yahoo... do it like this) 
¤  The architecture of these systems does not require “online administration with a DBA” 
¤  If something is broken, take out the faulty node and replace it. Nodes resync automatically. 

¨  Work required ? 
¤  Construction of images to be deployed on a barebone machine by experts 

n  e.g., Hadoop Namenode, Hadoop DataTaskNode, Cassandra Node 
n  no special requirements on the hardware; no virtual machines; not necessarily SLC 
n  images (even puppet modules) exist already (e.g., Cloudera), commercial support available 

¤  Deployment of a monitoring dashboard for these nodes 
n  application specific dashboards exist already from/for each product 
n  system dashboard already hosted by CERN (nagios, lemon) 

¤  No excessive operational support needed except 
n  Basic product maintenance (new versions, cluster restarts, firewalling, etc...) 
n  Wipe and reinstall of a faulty node with an image 
n  Hardware replacement of faulty hardware 
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Recommendations 

¨  One size DOES NOT fit all 
¤  Too many different use cases 
¤  Structured storage systems are designed to keep ongoing operational cost low 
¤  Proper images+dashboards could be done within weeks 

¨  Two major products (game changers) should be supported 
¤  All of these systems can do efficient key-value lookups, 

but only Hadoop and Cassandra scale out without explicit partitioning/sharding 
 

¤  Hadoop HDFS + HBase 
n  Large-scale analytics (data aggregation, correlation, and summarisation) 
n  Distributed storage 

 
¤  Cassandra 

n  Time-based data (log file analysis, time series) 
n  Low-latency application backend 

We need this technology! 
(And many others probably as well.) 

29 


