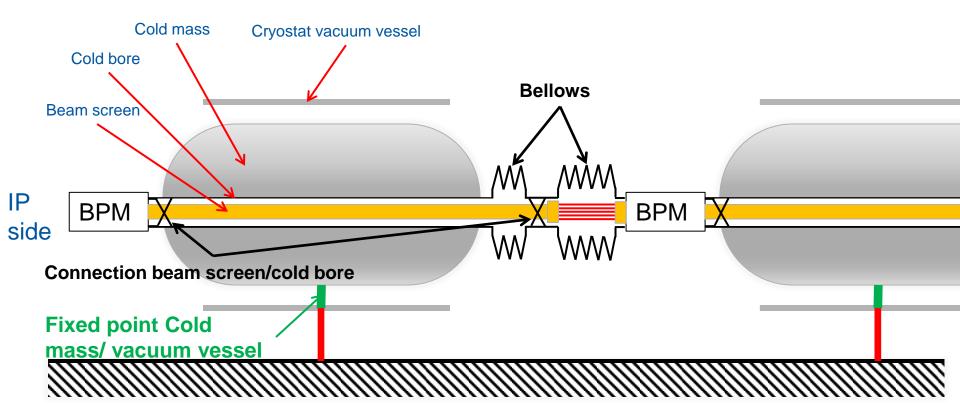


Beam Line Interconnection: snapshot of present design principles for vacuum components


C. Garion CERN/TE/VSC

Outline:

- Layout principle
- Compensation system requirements
- Bellows/ RF finger geometrical parameters
- Conceptual design
- Next steps

Layout principle

- Fixed point of the beam screen on the IP side (Minimise the distance IP/Q1)
- Bellows between beam screen and cold bore on the other side
- Shielded bellows between the two magnets (PIM)

Compensation system requirements

The thermal expansion coefficients of the cold masses and the beam screen tube have been assumed equal to those measured during the string II operation. [B. Calcagno, EDMS 434135].

The stroke, in mm, of the compensation system has been evaluated for different cooling/warm-up scenarii, validated on string II:

	Beam screen bellows	РІМ
Nominal conditions	5.2	27.5
Cool down	21.6	-10.8
Warm-up	-19.6	31.7
Exceptional 1	30.7	0.05
Exceptional 2	-19.6	20.8
Design value for the bellows	-19.6/21.6	-10.8/31.7

Bellows parameters

Beam screen bellows.

The axial stroke is specified to -19.6/21.6 mm. A transversal offset of +/-0.5 mm is assumed. \rightarrow The following bellows parameters are proposed:

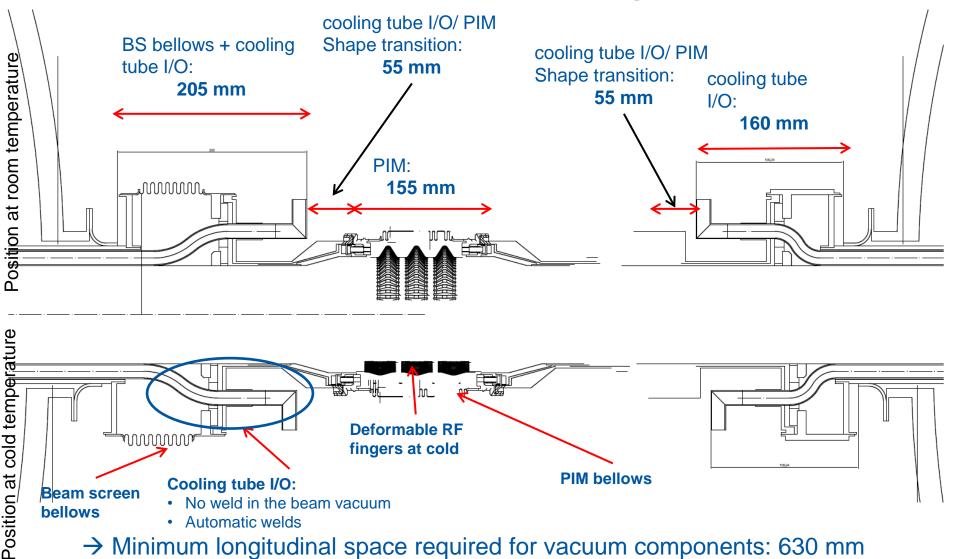
- Internal diameter: 258 mm,
- Convolution height: 12 mm, convolution length: 68 mm, number of convolutions: 9
- 1 ply, 0.15 mm thick

PIM bellows.

The axial stroke is specified to -10.8/31.7 mm. A transversal offset of +/- 2 mm is assumed.

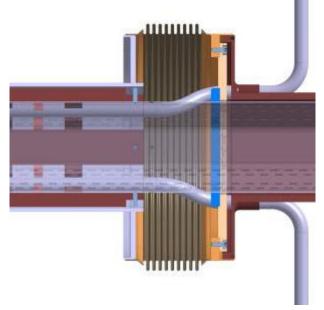
 \rightarrow The following bellows parameters are proposed:

- Internal diameter: 160 mm,
- Convolution height: 10 mm, convolution length: 76.5 mm, number of convolutions: 15
- 1 ply, 0.15 mm thick

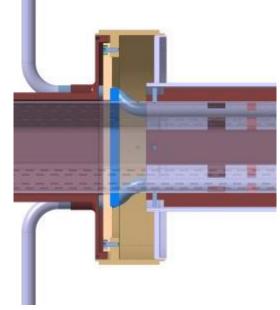

RF finger parameters

The concept of deformable fingers is considered. The operation conditions are defined by an extension (w.r.t. to installation position) of 27.5 mm, corresponding to an angle of 15°. \rightarrow 3 convolutions

Conceptual design



CERN


Vacuum, Surfaces & Coatings Group Technology Department

Next steps

- 3D model of beam vacuum interconnections and, in parallel, continue the design of components
- Design, with BE/BI, the interfaces with BPM to optimize the longitudinal space
- Fix the interconnection length (Q2 2015)

Preliminary 3D model of the sliding point

Preliminary 3D model of the fixe point

And then, prototyping of beam screen extremities and vacuum interconnections.

Vacuum, Surfaces & Coatings Group Technology Department

