Dark matter (DM) gauge boson couplings

Uli Haisch, University of Oxford, $16{ }^{\text {th }}$ January 2015 based on Crivellin, UH \& Hibbs, I 50 I . 00907

Motivation

"The weakness of interactions is often understood in field theory as a sign that the corresponding operators are irrelevant. Consequently, the "darkness" of DM may be naturally interpreted as a consequence of DM having only irrelevant interactions with light, and more generally with the electroweak gauge bosons.'

Motivation

In fact, in case of Majorana DM, dimension-5 operators of dipole type are absent, so leading $S U(2)\llcorner\times \cup(1)$ y invariant interactions of DM with photons are dimension 7 :

$$
\begin{gathered}
\mathcal{L}_{\mathrm{eff}}=\sum_{k=B, W, \tilde{B}, \tilde{W}} \frac{C_{k}(\mu)}{\Lambda^{3}} O_{k} \\
O_{B}=\bar{\chi} \chi B_{\mu \nu} B^{\mu \nu}, \quad O_{W}=\bar{\chi} \chi W_{\mu \nu}^{i} W^{i, \mu \nu}, \\
O_{\tilde{B}}=\bar{\chi} \chi B_{\mu \nu} \tilde{B}^{\mu \nu}, \quad O_{\tilde{W}}=\bar{\chi} \chi W_{\mu \nu}^{i} \tilde{W}^{i, \mu \nu}
\end{gathered}
$$

Motivation

Latter operators special:

- annihilation into photon pairs velocity suppressed
\rightarrow indirect detection probably never provide limits
- DM-nucleon interactions loop suppressed
\rightarrow present direct detection bounds quite weak ${ }^{\dagger}$
- for $\mathrm{m}_{\chi}<\mathrm{O}(100 \mathrm{GeV})$ relic density too large
\rightarrow additional operators or dark sector structure

Motivation

Latter operators special:

- annihilation into photon pairs velocity suppressed
\rightarrow indirect detection probably never provide limits
- DM-nucleon interactions loop suppressed
\rightarrow present direct detection bounds quite weak ${ }^{\dagger}$

Attractive DM scenario with room to be explored by LHC

LHC signals \& searches

Bounds on new-physics scale

Bounds on new-physics scale

LHC 14 TeV forecast

Limits improve by factor of at least 2 in first year. Then progress slows down given imperfect understanding of SM background (assumed to be known to 5\% accuracy) ${ }^{\dagger}$
†findings agree with [ATL-COM-PHYS-2014-549]

8 TeV LHC, $20 \mathrm{fb}^{-1}$:
$\Lambda \gtrsim 600 \mathrm{GeV}$

14 TeV LHC, $25 \mathrm{fb}^{-1}$:
$\Lambda \gtrsim 1.3 \mathrm{TeV}$
\bar{E}
14 TeV LHC, $300 \mathrm{fb}^{-1}$:
$\Lambda \gtrsim 1.5 \mathrm{TeV}$

Jet-jet angular correlations

Imposed VBF cuts :
$\Delta \eta_{j_{1} j_{2}}>2$,
$m_{j_{1} j_{2}}>1100 \mathrm{GeV}$

$\sigma_{\text {fid }}\left(p p \rightarrow \notin_{T}+2 j\right)=1.0 \mathrm{fb}$
$\sigma_{\text {fid }}(p p \rightarrow Z(\rightarrow \bar{\nu} \nu)+2 j)=0.35 \mathrm{fb}$

$$
\begin{aligned}
& S / \sqrt{B}=8.4\left(25 \mathrm{fb}^{-1}\right) \\
& S / \sqrt{B}=29\left(300 \mathrm{fb}^{-1}\right)
\end{aligned}
$$

$\longrightarrow C_{W}(\Lambda)=1, C_{\tilde{W}}(\Lambda)=0$
$— C_{W}(\Lambda)=0, C_{\tilde{W}}(\Lambda)=1$
—— SM background

Jet-jet angular correlations

Angular decomposition :

$$
\begin{gathered}
\frac{1}{\sigma} \frac{d \sigma}{d \Delta \phi_{j_{1} j_{2}}}=\sum_{n=0}^{2} a_{n} \cos \left(n \Delta \phi_{j_{1} j_{2}}\right) \\
\\
\left(a_{2} / a_{0}\right)_{W+\mathrm{SM}}=0.15 \pm 0.10 \\
\left(a_{2} / a_{0}\right)_{\tilde{W}+\mathrm{SM}}=-0.45 \pm 0.14 \\
\left(a_{2} / a_{0}\right)_{\mathrm{SM}}=-0.12 \pm 0.22
\end{gathered}
$$

significance : $2.7,2.4,5.1$

$=C_{W}(\Lambda)=1, C_{\tilde{W}}(\Lambda)=0$
$=C_{W}(\Lambda)=0, C_{\tilde{W}}(\Lambda)=1$
$=$ SM background $(\times 1 / 3)$

A \$295K backup

Jet-jet angular correlations

Angular decomposition :

$$
\begin{gathered}
\frac{1}{\sigma} \frac{d \sigma}{d \Delta \phi_{j_{1} j_{2}}}=\sum_{n=0}^{2} a_{n} \cos \left(n \Delta \phi_{j_{1} j_{2}}\right) \\
\\
\left(a_{2} / a_{0}\right)_{W+\mathrm{SM}}=0.18 \pm 0.03 \\
\left(a_{2} / a_{0}\right)_{\tilde{W}+\mathrm{SM}}=-0.40 \pm 0.04 \\
\left(a_{2} / a_{0}\right)_{\mathrm{SM}}=-0.13 \pm 0.07
\end{gathered}
$$

significance : $10.3,6.8,17.1$

$=C_{W}(\Lambda)=1, C_{\tilde{W}}(\Lambda)=0$
$=C_{W}(\Lambda)=0, C_{\tilde{W}}(\Lambda)=1$
$=$ SM background $(\times 1 / 3)$

Loop-induced direct detection

$$
\begin{aligned}
& O_{B} \xrightarrow{\text { mixing }} O_{q}=y_{q} \bar{\chi} \chi \bar{q} \phi q, \\
& O_{W} \xrightarrow{\text { mixing }} O_{\phi}=\bar{\chi} \chi\left(\phi^{\dagger} \phi\right)^{2}
\end{aligned}
$$

$$
C_{q}\left(\mu_{l}\right) \simeq\left(\frac{3 Y_{q_{L}} Y_{q_{R}} \alpha_{1}}{\pi} C_{B}(\Lambda)+\frac{9 \alpha_{2}^{2}}{2} \frac{v^{2}}{m_{h}^{2}} C_{W}(\Lambda)\right) \ln \left(\frac{m_{W}^{2}}{\Lambda^{2}}\right)+\ldots
$$

$$
C_{G}\left(\mu_{l}\right) \simeq-\frac{1}{12 \pi}\left\{\left(\frac{\alpha_{1}}{2 \pi} C_{B}(\Lambda)+\frac{27 \alpha_{2}^{2}}{2} \frac{v^{2}}{m_{h}^{2}} C_{W}(\Lambda)\right) \ln \left(\frac{m_{W}^{2}}{\Lambda^{2}}\right)+\ldots\right\}
$$

$$
\sigma_{N}^{\mathrm{SI}} \simeq \frac{m_{\mathrm{red}}^{2} m_{N}^{2}}{\pi \Lambda^{6}}\left|\sum_{q=u, d, s} f_{q}^{N} C_{q}\left(\mu_{l}\right)-\frac{8 \pi}{9} f_{G}^{N} C_{G}\left(\mu_{l}\right)+\ldots\right|^{2}
$$

[Crivellin \& UH, I408.5046]

Bounds on $\bigcirc_{B} \& O_{w}$

[Crivellin \& UH, I 408.5046]

