DCAFPILOT FOR CMS
PILOT PROJECT FOR CMS COMPUTING DATA-MINING

TALK OUTLINES

Project scope
e Project outlines
From data to prediction
m gather information from data-services
m prepare information suitable for data analysis
m trainlearner algorithm

m make prediction
Future direction

PROJECT SCOPE

e DMWM-Analytics () group
would like to improve our understanding of CMS computing
data, full list of projects:

e Ultimately we'd like to learn from CMS data and make
prediction to improve our resource utilization.

e |nitial goal is to predict popularity of new datasets.

e Start with understanding metrics, analysis workflow, tools:
O (Data and Computing Analysis Framework) is a
pilot project to understand machinery involved with this
problem.

WHY WE NEED THIS

e CMS has Dynamic Data Placement group which uses historical
information to place popular dataset to sites

e \We would like to predict which datasets will become popular
once they appear on a market

e \We can extend the scope of previous task to predict decline in
popularity of certain datasets, reduce redundant activity,

improve resource allocation, etc.

PROJECT OUTLINES

The DCAFPIilot consists of several components:

e Dataframe generator toolkit: collect/transform data from CMS data-services (DBS/PhEDEXx/Site DB
/PopularityDB/Dashboard) and extract necessary bits for datasets in questions

e Machine Learning (ML) algorithms (python/R code) for data analysis

e Data manipulation scripts: merge, transform, check predictions, etc.

Get the code:

git clone git@github.com:dmwm/DMWMAnalytics.git

Dependencies:

° project, available at github
° for internal cache
e Pythontools: : : : ML toolkit

° for data exploration and ML algorithms,
ML algorithms, any other external ML toolkits, e.g.

toolkit to run/experiment with various
online-learning algorithm

DATA COLLECTION FLOW

e Collect data via the following set of rules

Collect all datasets (4 DBS instances) into internal cache

Collection popular datasets from PopularityDB on weekly basis

Get summary for datasets from DBS/PhEDEXx/SiteDB/Dashboard data-services

Complement dataframe with random set of DBS datasets which were not visible in popularity for given
time interval

e CMS data-service APIs used by DCAFPilot package

datasets, releases, filesummaries, releaseversions, datasetparents APls
blockReplicas API
site-names, people APIls
DSStatInTimeWindow API
jobefficiencyapi API

DATA COLLECTION FLOW DIAGRAM

CMS data
services

DCAF
MachineLearning

AdaBoost
Bagging
GauusianNB
— N
DCAF core - dataframe . LDA
. PCA
SGD
SVC

3 + RF
MongoDB « VW
cache

Probability, DatasetName
0.97, /Prim1/Proc1/TIER1
0.12, /Prim2/Proc2/TIER2

Computing
infrastructure

DATAFRAME PREPARATION, CONT'D

Queried 5 CMS data-services: DBS, PhEDEx, SiteDB, PopularityDB, Dashboard
- used 10 APIs to get data content
- feed internal cache with ~220K datasets from 4 DBS instances,
~900 release names, 500+ site names, ~5k people DNs.
placed ~800K queries

The final dataframe is constructed out of 78 variables and has 52 files and ~600K rows
- each file is worth of 1 week of CMS data, ~600KB zipped/file
- each file has about ~1K of popular datasets plus 10K random "un-popular" datasets

Elapsed time: ~4h to lh per job, times fade out due to cache usage (MongoDB)
All jobs run on two CERN VM w/ N jobs/core splitting

We anonymized all data and performed factorization via internal cache

id,cpu,creator,dataset,dbs,dtype,era,naccess,nblk,nevt,nfiles,nlumis,nrel,nsites,nusers, parent,primds,proc_evts,procds,rell 0,rel
999669242,207737071.0,2186,20186,3,0,759090,14251.0,6,21675970,2158,72274,1,10,11.0,5862538,335429,30667701,373256,0,0,0,0,1,1,0,
332990665,114683734.0,2186,176521,3,1,759090,21311.0,88,334493030,32621,86197,1,4,8.0,6086362,968016,123342232,1037052,0,0,0,0,1,!

2014 dataset is available at

DATAFRAME DESCRIPTION

unique id constructed as long('%$s%s%s'%(tstamp,dbsinst,dataset id)) % 2**30
CPU time reported by Dashboard data-service for given dataset
anonymized DN of the user who created given dataset, reported by DBS
DBS dataset id (comes from DBS APIs/database back-end)
DBS instance id
anonymized DBS data type (e.g. data, mc)
anonymized DBS acquisition era name associated with given dataset
number of blocks in given dataset, reported by DBS
number of events in given dataset, reported by DBS
number of files in given dataset, reported by DBS
number of lumi sections in given dataset, reported by DBS
number of releases associated with given dataset, reported by DBS
number of sites associated with given dataset, reported by PhEDEx
parent id of given dataset, reported by DBS
anonymized primary dataset name, reported by DBS
number of processed events, reported by Dashboard
anonymized processed dataset name, reported by DBS
DBS release counter defined as N-number of series releases associated with given dataset
DBS release counter defined as N-number of major releases associated with given dataset
DBS release counter defined as N-number of minor releases associated with given dataset
PhEDEx site counter, i.e. number of Tier sites holding this dataset replica
size of the dataset, reported by DBS and normalized to GB metric
anonymized tier name, reported by DBS
wall clock counter for given dataset, reported by Dashboard

Target variables:
number of accesses to a dataset, reported by PopularityDB
number of users*days to a dataset, reported by PopularityDB
number of cpu hours to accessed dataset, reported by PopularityDB
naccess (dataset)/SUM i naccess(i), reported by PopularityDB
nusers (dataset)/SUM i nusers(i), reported by PopularityDB
totcpu(dataset)/SUM i totcpu(i), reported by PopularityDB

Some variables are useful for online learning while other can be used in offline context.

DBS instance

=10

—r T 11T 1T
00 05 10 15 20 25 30

dbs isntances

DBS primary dataset

50 100 150 200 230

0

LIVE DATA PLOTS

DBS era

DBS tier

Number of sites (log)

10

CPU usage

Number of processed events (log)

| DU S R R B
0 5 10 20 25

Processing events

Wall clock time

Data transition through 2014 on weekly basis

CORRELATIONS

creator
dataset
dbs
dtype
era
nblk
nevt
nfiles
nlumis
nrel
nsites
parent
primds
proc_evis
procds
size
tier
wct

Subset of variables, showing all of them in single plot can hard to swallow.

DATASET POPULARITY

929400
929310 45930

56031 1701699309
25397 20241 1967
9211482 0655072 20491724011

S

45937 176521 20248
20259 727555”32910559265288311080

301 1903091@000 30 %7 4 19648

30058, 04 A

471276 196251 88614 267 83
2012520269 94467 17044983%368(?37
928669 520518 26 919302 921574 2

951%29 20%%33655990 $3858 20244 i

86%%9239 600668004932

93090 %%8;%4328 7 %%%89911 7(?0602

930856 309163

929399 56043 329838

Left plot shows few random datasets, while right one summarizes 100 most accessed datasets through 2014.
dataset access is like stock market, but N(datasets) >> N(stocks @ NASDAQ)

DIFFERENT DATASET POPULARITY METRICS

290765
195627 789874 930903 192?57?193 ;(73772457185’10

20
50386 25155 45926866478 882745267

45955
6043 193919 20269
160617 194026 194467 - 160608 15008 1

50482 50479

103333 29738 55 33 2506845935

17044920186 6 1 329104254
196251
e 88! 20269 J1523%

176521 88614

A GEY e

796738 402620259
10004 4000220241
45937_4000640012 55397 160525 70052 53089

692652160941 20251
10 20491 conr
5019 930895

0238 25029
25068

%8518

popular datasets by nusers, popular datasets by totcpu metric.
Therefore, target defition should be clearly defined. For the rest of slides I'll stick with naccess metric.

HOW TO ATTACK THIS PROBLEM

This seems to be time series problem, i.e. dataset popularity change over time

We can use rolling approach, like weather forecast, but for new datasets we do not have historical information.
We can use either regression or classification approach. The former will allow to predict real values of metrics,
e.g. naccess, while later can only classify between categories, i.e. popular or not. The classification will give us

maximum gain with minimal inefficiency.

We can use any tools, e.g. python, R, online-learners, custom algorithm.

We'll show how to address this problem via DCAFPilot tools and discuss all steps from getting information to
making prediction. We'll conclude about usefulness of the model by using a few statistical variables: accuracy,
precision, recall and F1 scorers.

ACCURACY, PRECISION, RECALL AND F1

Low accuracy Low accuracy
Low precision High precision

High accuracy High accuracy
Low precision High precision

TP: true positive, TN: true negative, FP: false positive (false alarm), FN: false negative (miss)
$Accuracy=\frac{TP+TN¥TP+TN+FP+FN}$, $Precision=\frac{TP¥TP+FP}$,

$Recall=\frac{TP{TP+FN}$, a.k.a sensitivity, fraction of relevant instances that are retrieved

$F1=\frac{2*Precision*Recall}{Precision+Recall}=\frac{2TP}2TP+FP+FN}$, a.k.a weighted average of the
precision and recall

FROM DATA TO PREDICTION

1. Generate dataframe or get it from existing repository
2. Transform data into suitable format for ML
3. Build ML model
e use classification or regression techniques
e train and validate your model
m split data into train and validation sets

we have ~600K rows in 2014 dataset
train set (Jan-Nov), test set (Dec)
m estimate your predictive power on validation set
4. Generate new data and transform it similar to step #2.
5. Apply your best model to new data to make prediction
6. Verify prediction with popularity DB once data metrics
become available

get the data, we keep it secure in separate CERN based repository
prompt 1$ git clone https://:@git.cern.ch/kerberos/CMS-DMWM-Analytics-data

merge dataframes, then split 2014.csv.gz into train/valid datasets
prompt 2$ merge csv --fin=CMS-DMWM-Analytics-data/Popularity/DCAFPilot/data/0.0.3 --fout=2014.csv.gz —-verbose

transform data into classification problem and remove useless variables
prompt 3$ transform csv --fin=2014.csv.gz --fout=train clf.csv.gz --target=naccess --target-thr=100 \
--drops=nusers, totcpu,rnaccess,rnusers,rtotcpu,nsites,s 0,s 1,s 2,s 3,s 4,wct

train the model
prompt 4$ model --learner=RandomForestClassifier --idcol=id --target=target --train-file=train clf.csv.gz \
--scaler=StandardScaler --newdata=valid clf.csv.gz --predict=pred.txt

check prediction

prompt 5$ check prediction --fin=valid clf.csv.gz --fpred=pred.txt --scorer=accuracy,precision,recall,fl
Score metric (accuracy score): 0.982348203499

Score metric (precision score): 0.79773214833

Score metric (recall score): 0.952781844802

Score metric (fl score): 0.868390325271

convert prediction into human/CMS data format
prompt 6$ pred2dataset --fin=pred.txt --fout=pred.txt.out

inspect prediction
prompt 7$ head -2 pred.txt.out
1.000,/GenericTTbar/HC-CMSSW 7 0 4 START70 V7-v1/GEN-SIM-RECO

1.000, /SingleMu/Run2012D-22Jan2013-v1/AOD

17

seed dataset cache (w/ MongoDB back-end)
prompt 1$ dataframe --seed-cache --verbose=1

get new data from DBS (you may need to run it in background)
prompt 2$ dataframe --start=20150101 --stop=20150108 --newdata --verbose=1 --fout=new-20150101-20150108.csv

transform new data into classification problem similar to our train data
prompt 3$ transform csv --fin=new-20150101-20150108.csv.gz —--fout=newdata-20150101-20150108.csv.gz —-target=naccess \
--target-thr=100 --drops=nusers,totcpu,rnaccess,rnusers,rtotcpu,nsites,s 0,s 1,s 2,s 3,s 4,wct

run the model with new data
prompt 4$ model --learner=RandomForestClassifier --idcol=id --target=target --train-file=train clf.csv.gz \
--scaler=StandardScaler --newdata=newdata-20150101-20150108.csv.gz --predict=pred.txt

produce human readable format and inspect its output

prompt 5$ pred2dataset --fin=pred.txt --fout=pred.txt.out

prompt 6$ head -2 pred.txt.out

0.000, /RelValQCDForPF 14TeV/CMSSW 6 2 0 SLHC22 patchl-PH2 1K FB V6 UPG23SHNoTaper-vl1/GEN-SIM-DIGI-RAW
0.000, /RelValQCDForPF 14TeV/CMSSW 6 2 0 SLHC22 patchl-PH2 1K FB V6 UPG23SHNoTaper-v1/DQMIO

get popular datasets from popularity DB
prompt 7$ popular datasets --start=20150101 --stop=20150108 > popdb-20150101-20150108.txt

verify our prediction against similar period from popularity DB

prompt 8$ verify predictions --pred=pred.txt.out --popdb=popdb-20150101-20150108.txt
Popular datasets : 841

Predicted datasets : 187

Wrongly predicted : 0

18

DISCUSSION

e Shown steps demonstrate ability of DCAFPilot project

e Theresults should be taken with caution
= New data corresponded to first week of the year when there were no "real" activity among physicists
m Chosen naccess metric may have bias towards test datasets which should be discarded
= \WWe may need to scan metric space for suitable definition of dataset "popularity"

e Userolling approach: get new data — adjust model — make prediction and repeat the cycle

¢ \We may need to extend existing dataframe to new dimensions: cluster users activity via HN analysis,
conference dates; analysis of release quality, etc.

PRELIMINARY RESULTS

Following table shows result from model trained on Jan-Nov data and validated with Dec dataset (a la rolling
approach). The RF,SGD, LinearSVC are classifiers (python), the is online-learning
algorithm by Yahoo, while is parallel gradient boosting tree solution which won
Kaggle Higgs competition.

naccess>100 naccess>0 naccess>10 and

naccess<10000 and
nsites<50
Classifier Data accu prec
Random Forest all c c c o 5 5 5 5 0.96 0.70
new 0. c c c 5 5 5 5 0.92 1.00
SGDClassifier all c c c o 5 5 5 5 0.95 0.70
new c c - - 5 5 5 5 .60 1.00
Linear SVC all c c c c 5 5 5 5 .95 0.62
new c c c - 5 5 5 5 .90 1.00
Vowpal Wabbit all c c c o 5 5 5 5 .94 0.65
new c c c s 5 5 5 5 .49 1.00
xgboost all c c c c 5 5 5 5 .96 0.71
new c c c . 5 5 5 5 .98 1.00

rows with all values are data from train (Jan-Nov)/validation (Dec) sets, rows with new values are
selected new datasets in Dec dataset, i.e. they were not present in train set.

CONCLUSIONS & FUTURE DIRECTIONS

e We show the proof of concept how to predict dataset popularity based on existing CMS tools
m DCAFPilot package has main components to do the work, but does not limit you to use other tools

e We succeed making sensible prediction with different ML models
= Even though initial dataframe/model shows it should be to avoid
main ML obstacles, e.g. data memorization, over-fitting, etc.,and
m More datain terms of volume and attributes may be required for further analysis, e.g. find physicists
clustering on certain topics
m Even though all work was done on a single node with existing APls we may need to pursue other
approaches, e.g. ORACLE-Hadoop mapping, etc.

Explore various ML algorithms: python, R, online-learning

Try out different popularity metrics, e.g. (r)naccess, (r)totcpu, (r)nusers or any combination of them

Explore different approaches: track individual datasets, dataset groups, etc.
Use other resources: user activity on HN, conference deadlines influence, etc.

e Test predictions with real data, i.e. acquire new datasets and make prediction for them, then wait for data from
popularity DB and compare prediction with actual data

e Automate tools, e.g. weekly crontabs, generate model updates, verify model predictions

