
DCAFPILOT FOR CMSDCAFPILOT FOR CMS
PILOT PROJECT FOR CMS COMPUTING DATA-MININGPILOT PROJECT FOR CMS COMPUTING DATA-MINING

by / Valentin Kuznetsov Cornell University

1

TALK OUTLINESTALK OUTLINES
Project scope
Project outlines
From data to prediction

gather information from data-services
prepare information suitable for data analysis
train learner algorithm
make prediction

Future direction

2

PROJECT SCOPEPROJECT SCOPE
DMWM-Analytics () group
would like to improve our understanding of CMS computing
data, full list of projects:

Ultimately we'd like to learn from CMS data and make
prediction to improve our resource utilization.

Initial goal is to predict popularity of new datasets.

Start with understanding metrics, analysis workflow, tools:
 (Data and Computing Analysis Framework) is a

pilot project to understand machinery involved with this
problem.

cms-dmwm-analytics@cern.ch

https://twiki.cern.ch/twiki/bin/viewauth/CMS/CMSComputingAnalytics

DCAFPilot

3

WHY WE NEED THISWHY WE NEED THIS
CMS has Dynamic Data Placement group which uses historical
information to place popular dataset to sites
We would like to predict which datasets will become popular
once they appear on a market
We can extend the scope of previous task to predict decline in
popularity of certain datasets, reduce redundant activity,
improve resource allocation, etc.

4

PROJECT OUTLINESPROJECT OUTLINES
The DCAFPilot consists of several components:

Dataframe generator toolkit: collect/transform data from CMS data-services (DBS/PhEDEx/SiteDB
/PopularityDB/Dashboard) and extract necessary bits for datasets in questions

Machine Learning (ML) algorithms (python/R code) for data analysis

Data manipulation scripts: merge, transform, check predictions, etc.

Get the code:

Dependencies:
 project, available at github
 for internal cache

Python tools: , , , ML toolkit
Optional: for data exploration and ML algorithms, toolkit to run/experiment with various
ML algorithms, any other external ML toolkits, e.g. online-learning algorithm

git clone git@github.com:dmwm/DMWMAnalytics.git

DCAFPilot
MongoDB

pandas NumPy SciPy sklearn
R language SKLL

Vowpal Wabbit

5

DATA COLLECTION FLOWDATA COLLECTION FLOW
Collect data via the following set of rules

Collect all datasets (4 DBS instances) into internal cache
Collection popular datasets from PopularityDB on weekly basis
Get summary for datasets from DBS/PhEDEx/SiteDB/Dashboard data-services
Complement dataframe with random set of DBS datasets which were not visible in popularity for given
time interval

CMS data-service APIs used by DCAFPilot package
 datasets, releases, filesummaries, releaseversions, datasetparents APIs

 blockReplicas API
 site-names, people APIs

 DSStatInTimeWindow API
 jobefficiencyapi API

DBS:
PhEDEx:
SiteDB:
PopularityDB:
Dashboard:

6

DATA COLLECTION FLOW DIAGRAMDATA COLLECTION FLOW DIAGRAM

7

DATAFRAME PREPARATION, CONT'DDATAFRAME PREPARATION, CONT'D

We anonymized all data and performed factorization via internal cache

2014 dataset is available at

Queried 5 CMS data-services: DBS, PhEDEx, SiteDB, PopularityDB, Dashboard
 - used 10 APIs to get data content
 - feed internal cache with ~220K datasets from 4 DBS instances,
 ~900 release names, 500+ site names, ~5k people DNs.
 - placed ~800K queries

The final dataframe is constructed out of 78 variables and has 52 files and ~600K rows
 - each file is worth of 1 week of CMS data, ~600KB zipped/file
 - each file has about ~1K of popular datasets plus 10K random "un-popular" datasets

Elapsed time: ~4h to 1h per job, times fade out due to cache usage (MongoDB)
All jobs run on two CERN VM w/ N jobs/core splitting

id,cpu,creator,dataset,dbs,dtype,era,naccess,nblk,nevt,nfiles,nlumis,nrel,nsites,nusers,parent,primds,proc_evts,procds,rel1_0,rel1_1,rel1_2,rel1_3,r
999669242,207737071.0,2186,20186,3,0,759090,14251.0,6,21675970,2158,72274,1,10,11.0,5862538,335429,30667701,373256,0,0,0,0,1,1,0,0
332990665,114683734.0,2186,176521,3,1,759090,21311.0,88,334493030,32621,86197,1,4,8.0,6086362,968016,123342232,1037052,0,0,0,0,1,2
....

https://git.cern.ch/web/CMS-DMWM-Analytics-data.git

8

DATAFRAME DESCRIPTIONDATAFRAME DESCRIPTION

Some variables are useful for online learning while other can be used in offline context.

id: unique id constructed as long('%s%s%s'%(tstamp,dbsinst,dataset_id)) % 2**30
cpu: CPU time reported by Dashboard data-service for given dataset
creator: anonymized DN of the user who created given dataset, reported by DBS
dataset: DBS dataset id (comes from DBS APIs/database back-end)
dbs: DBS instance id
dtype: anonymized DBS data type (e.g. data, mc)
era: anonymized DBS acquisition era name associated with given dataset
nblk: number of blocks in given dataset, reported by DBS
nevt: number of events in given dataset, reported by DBS
nfiles: number of files in given dataset, reported by DBS
nlumis: number of lumi sections in given dataset, reported by DBS
nrel: number of releases associated with given dataset, reported by DBS
nsites: number of sites associated with given dataset, reported by PhEDEx
parent: parent id of given dataset, reported by DBS
primds: anonymized primary dataset name, reported by DBS
proc_evts: number of processed events, reported by Dashboard
procds: anonymized processed dataset name, reported by DBS
rel1_N: DBS release counter defined as N-number of series releases associated with given dataset
rel2_N: DBS release counter defined as N-number of major releases associated with given dataset
rel3_N: DBS release counter defined as N-number of minor releases associated with given dataset
s_X: PhEDEx site counter, i.e. number of Tier sites holding this dataset replica
size: size of the dataset, reported by DBS and normalized to GB metric
tier: anonymized tier name, reported by DBS
wct: wall clock counter for given dataset, reported by Dashboard

Target variables:
naccess: number of accesses to a dataset, reported by PopularityDB
nusers: number of users*days to a dataset, reported by PopularityDB
totcpu: number of cpu hours to accessed dataset, reported by PopularityDB
rnaccess: naccess(dataset)/SUM_i naccess(i), reported by PopularityDB
rnusers: nusers(dataset)/SUM_i nusers(i), reported by PopularityDB
rtotcpu: totcpu(dataset)/SUM_i totcpu(i), reported by PopularityDB

9

Data transition through 2014 on weekly basis

LIVE DATA PLOTSLIVE DATA PLOTS

10

CORRELATIONSCORRELATIONS

Subset of variables, showing all of them in single plot can hard to swallow.

11

DATASET POPULARITYDATASET POPULARITY

Left plot shows few random datasets, while right one summarizes 100 most accessed datasets through 2014.
Observation: dataset access is like stock market, but N(datasets) >> N(stocks @ NASDAQ)

12

DIFFERENT DATASET POPULARITY METRICSDIFFERENT DATASET POPULARITY METRICS

Left: popular datasets by nusers, Right: popular datasets by totcpu metric.
Therefore, target defition should be clearly defined. For the rest of slides I'll stick with naccess metric.

13

HOW TO ATTACK THIS PROBLEMHOW TO ATTACK THIS PROBLEM
This seems to be time series problem, i.e. dataset popularity change over time

We can use rolling approach, like weather forecast, but for new datasets we do not have historical information.

We can use either regression or classification approach. The former will allow to predict real values of metrics,
e.g. naccess, while later can only classify between categories, i.e. popular or not. The classification will give us
maximum gain with minimal inefficiency.

We can use any tools, e.g. python, R, online-learners, custom algorithm.

We'll show how to address this problem via DCAFPilot tools and discuss all steps from getting information to
making prediction. We'll conclude about usefulness of the model by using a few statistical variables: accuracy,
precision, recall and F1 scorers.

14

ACCURACY, PRECISION, RECALL AND F1ACCURACY, PRECISION, RECALL AND F1

TP: true positive, TN: true negative, FP: false positive (false alarm), FN: false negative (miss)

$Accuracy=\frac{TP+TN}{TP+TN+FP+FN}$, $Precision=\frac{TP}{TP+FP}$,

$Recall=\frac{TP}{TP+FN}$, a.k.a sensitivity, fraction of relevant instances that are retrieved

$F1=\frac{2*Precision*Recall}{Precision+Recall}=\frac{2TP}{2TP+FP+FN}$, a.k.a weighted average of the
precision and recall

15

FROM DATA TO PREDICTIONFROM DATA TO PREDICTION
Generate dataframe or get it from existing repository1.
Transform data into suitable format for ML2.
Build ML model

use classification or regression techniques
train and validate your model

split data into train and validation sets
we have ~600K rows in 2014 dataset
train set (Jan-Nov), test set (Dec)
estimate your predictive power on validation set

3.

Generate new data and transform it similar to step #2.4.
Apply your best model to new data to make prediction5.
Verify prediction with popularity DB once data metrics
become available

6.

16

FROM DATA TO PREDICTION, STEP 1-3FROM DATA TO PREDICTION, STEP 1-3
DCAFPilot tools: merge_csv, model, check_prediction, pred2dataset

get the data, we keep it secure in separate CERN based repository
prompt_1$ git clone https://:@git.cern.ch/kerberos/CMS-DMWM-Analytics-data

merge dataframes, then split 2014.csv.gz into train/valid datasets
prompt_2$ merge_csv --fin=CMS-DMWM-Analytics-data/Popularity/DCAFPilot/data/0.0.3 --fout=2014.csv.gz --verbose

transform data into classification problem and remove useless variables
prompt_3$ transform_csv --fin=2014.csv.gz --fout=train_clf.csv.gz --target=naccess --target-thr=100 \
 --drops=nusers,totcpu,rnaccess,rnusers,rtotcpu,nsites,s_0,s_1,s_2,s_3,s_4,wct

train the model
prompt_4$ model --learner=RandomForestClassifier --idcol=id --target=target --train-file=train_clf.csv.gz \
 --scaler=StandardScaler --newdata=valid_clf.csv.gz --predict=pred.txt

check prediction
prompt_5$ check_prediction --fin=valid_clf.csv.gz --fpred=pred.txt --scorer=accuracy,precision,recall,f1
Score metric (accuracy_score): 0.982348203499
Score metric (precision_score): 0.79773214833
Score metric (recall_score): 0.952781844802
Score metric (f1_score): 0.868390325271

convert prediction into human/CMS data format
prompt_6$ pred2dataset --fin=pred.txt --fout=pred.txt.out

inspect prediction
prompt_7$ head -2 pred.txt.out
1.000,/GenericTTbar/HC-CMSSW_7_0_4_START70_V7-v1/GEN-SIM-RECO
1.000,/SingleMu/Run2012D-22Jan2013-v1/AOD

17

MAKING PREDICTIONS, STEPS 4-6MAKING PREDICTIONS, STEPS 4-6
DCAFPilot tools: dataframe, transform_csv, model, pred2dataset, popular_datasets,
verify_predictions

seed dataset cache (w/ MongoDB back-end)
prompt_1$ dataframe --seed-cache --verbose=1

get new data from DBS (you may need to run it in background)
prompt_2$ dataframe --start=20150101 --stop=20150108 --newdata --verbose=1 --fout=new-20150101-20150108.csv

transform new data into classification problem similar to our train data
prompt_3$ transform_csv --fin=new-20150101-20150108.csv.gz --fout=newdata-20150101-20150108.csv.gz --target=naccess \
 --target-thr=100 --drops=nusers,totcpu,rnaccess,rnusers,rtotcpu,nsites,s_0,s_1,s_2,s_3,s_4,wct

run the model with new data
prompt_4$ model --learner=RandomForestClassifier --idcol=id --target=target --train-file=train_clf.csv.gz \
 --scaler=StandardScaler --newdata=newdata-20150101-20150108.csv.gz --predict=pred.txt

produce human readable format and inspect its output
prompt_5$ pred2dataset --fin=pred.txt --fout=pred.txt.out
prompt_6$ head -2 pred.txt.out
0.000,/RelValQCDForPF_14TeV/CMSSW_6_2_0_SLHC22_patch1-PH2_1K_FB_V6_UPG23SHNoTaper-v1/GEN-SIM-DIGI-RAW
0.000,/RelValQCDForPF_14TeV/CMSSW_6_2_0_SLHC22_patch1-PH2_1K_FB_V6_UPG23SHNoTaper-v1/DQMIO

get popular datasets from popularity DB
prompt_7$ popular_datasets --start=20150101 --stop=20150108 > popdb-20150101-20150108.txt

verify our prediction against similar period from popularity DB
prompt_8$ verify_predictions --pred=pred.txt.out --popdb=popdb-20150101-20150108.txt
Popular datasets : 841
Predicted datasets : 187
Wrongly predicted : 0

18

DISCUSSIONDISCUSSION
Shown steps demonstrate ability of DCAFPilot project

The results should be taken with caution
New data corresponded to first week of the year when there were no "real" activity among physicists
Chosen naccess metric may have bias towards test datasets which should be discarded
We may need to scan metric space for suitable definition of dataset "popularity"

Use rolling approach: get new data → adjust model → make prediction and repeat the cycle

We may need to extend existing dataframe to new dimensions: cluster users activity via HN analysis,
conference dates; analysis of release quality, etc.

19

PRELIMINARY RESULTSPRELIMINARY RESULTS
Following table shows result from model trained on Jan-Nov data and validated with Dec dataset (a la rolling
approach). The RF, SGD, LinearSVC are classifiers (python), the is online-learning
algorithm by Yahoo, while is parallel gradient boosting tree solution which won
Kaggle Higgs competition.

naccess>100 naccess>0 naccess>10 and

naccess<10000 and

nsites<50

Classifier Data accu prec reca f1 accu prec reca f1 accu prec reca f1

Random Forest all

new

0.97 0.85 0.89 0.87

0.83 1.00 0.83 0.91

0.89 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.96 0.70 0.89 0.78

0.92 1.00 0.92 0.96

SGDClassifier all

new

0.97 0.88 0.68 0.77

0.45 1.00 0.45 0.62

0.95 0.86 0.70 0.77

0.71 1.00 0.71 0.83

0.95 0.70 0.72 0.71

0.60 1.00 0.60 0.75

Linear SVC all

new

0.94 0.53 0.99 0.69

0.98 1.00 0.98 0.99

0.97 0.83 0.97 0.89

0.97 1.00 0.97 0.98

0.95 0.62 0.92 0.74

0.90 1.00 0.90 0.95

Vowpal Wabbit all

new

0.95 0.61 0.69 0.65

0.54 1.00 0.54 0.70

0.99 0.91 1.00 0.95

1.00 1.00 1.00 1.00

0.94 0.65 0.61 0.63

0.49 1.00 0.49 0.65

xgboost all

new

0.98 0.88 0.95 0.92

0.92 1.00 0.92 0.95

0.99 0.97 1.00 0.98

1.00 1.00 1.00 1.00

0.96 0.71 0.97 0.82

0.98 1.00 0.98 0.99

Data selection: rows with all values are data from train (Jan-Nov)/validation (Dec) sets, rows with new values are
selected new datasets in Dec dataset, i.e. they were not present in train set.

scikit-learn Vowpal wabbit
eXtreme Gradient Boosting

20

CONCLUSIONS & FUTURE DIRECTIONSCONCLUSIONS & FUTURE DIRECTIONS
We show the proof of concept how to predict dataset popularity based on existing CMS tools

DCAFPilot package has main components to do the work, but does not limit you to use other tools

We succeed making sensible prediction with different ML models
Even though initial dataframe/model shows some potential it should be thoughtfully studied to avoid
main ML obstacles, e.g. data memorization, over-fitting, etc., and checked with new data
More data in terms of volume and attributes may be required for further analysis, e.g. find physicists
clustering on certain topics
Even though all work was done on a single node with existing APIs we may need to pursue other
approaches, e.g. ORACLE-Hadoop mapping, etc.

Explore various ML algorithms: python, R, online-learning

Try out different popularity metrics, e.g. (r)naccess, (r)totcpu, (r)nusers or any combination of them

Explore different approaches: track individual datasets, dataset groups, etc.

Use other resources: user activity on HN, conference deadlines influence, etc.

Test predictions with real data, i.e. acquire new datasets and make prediction for them, then wait for data from
popularity DB and compare prediction with actual data

Automate tools, e.g. weekly crontabs, generate model updates, verify model predictions

21

