Project News

G-AVD GEM Voltage Divider TPIC Mesh trigger pickup
 Femto-Meter

H. Muller, E. Oliveri, A. Rusu

- these and more electronics projects progress in the GDD lab at CERN depending on availability of resources and students

G-AVD
 Active Voltage Divider for GEMs

3 month 2015 sponsored by ALICE TPC upgrade project looking for another 3 month

RD51/CERN works since 2013 on active voltage divider technology for GEMs as a general solution
1.) eliminate load inefficiencies of resistive dividers
2.) quench and mitigate sparks
3.) decouple load and spark effects between sectors
4.) precision monitoring of U and I
5.) analogue current failure monitor/detector
6.) fast reaction to trip and safe tripping power off procedure

Photo : 2014 AVD proto for triple GEM with Voltage monitoring and readout board

G-AVD

T-stabilizer

E-fuse*

Without E-fuse, a GEM foil short circuit over a 50 k series resistor

 would draw $\mathrm{O}(10 \mathrm{~mA})$. With E -fuse, the current limit of a short is $\mathrm{O}(40 \mathrm{uA})$

Series resistance inside E-Fuse $50-$-100k: GEM current of $\mathrm{I}_{\text {GEM }}=10 \mathrm{uA}$ result in GEM Voltage drop of $0.5-1 \mathrm{~V}$
To: optional monitoring board for (U,I) measurement, 14 bit ADCs and USB port
*E-fuse technology was developed by RD51/CERN

GEM voltage and current measurement (optional use of Probe Points B*)

3-stack GEM: 7 measuring lines 4 stack GEM: 9 measuring points

Bias Currents O (1uA) of GOHM divider is constant and compensated by T-stabilizer
*Probe B is a bidirectional, very low impedance component

G-AVD Schematics

$-U_{h v}, \max 5 \mathrm{kV}$

E-Fuse characteristics

Measured after E-Fuse at GEM4 @ 320V and $5 \mathrm{nF}, \mathrm{R}_{\mathrm{s}}=50 \mathrm{kOHM}$

*different threshold currents defined by resistor

GAVD board

GAVD and e-fuse Altium design*

$1{ }^{\text {st }}$ GAVD board /box to be delivered to ALICE TPC by end march

GAVD board and E-fuse board 36 .. 54 e-fused sectors per G-AVD Unit*

1 Carrier for 18 e-fuses
18 HV wires to GEM sectors/board
2..3 stacked E-fuse boards

GAVD heat dissipation*

Typical GAVD Wattage @ 3 kV R-divider $\left(0.5 \mathrm{~mA}^{*}\right)=1.56 \mathrm{~W}$
T-cascade $(0.5 \mathrm{~mA})=1.56 \mathrm{~W}$
Total current $=1 \mathrm{~mA} @ 3.12 \mathrm{kV}$

$$
\Sigma_{\text {standard }}=3.1 \mathrm{Watt}
$$

Some applications may require T-cascade currents up to 2 mA

$$
\Sigma_{\max }=10 \mathrm{Watt}
$$

Only passive cooling possible inside B-fields
*nominal currents
R-divider : depends on R-divider resistor choice T-cascade: depends on current source setting

GAVD box

10 Watt heat conduction via ceramic PCB in thermal contact to box
via 4 standoffs. Box needs to be in good thermal contact with environment : flanch fixation

Current monitor (LEMO)

Die-cast Hammond 1590D $119.5 \times 56 \times 51 \mathrm{~mm}$

Current monitoring

E-fuse hybrids

E-fuse box

G-AVD conclusion

- 3 slices: R-Divider, Active stabilizer and E-fuses
- R-divider defines raw-HV voltges for GEMs
- Active stabilizer decouples Voltages from Currents
- E-fuses decouple individual GEM segments from each other
- Overcurrent $>I_{\text {th }}$ makes e-fuse output Voltage drop to zero
- Within the ON-state of the e-fuse, the GEM dropoff voltage as function of GEM current is according OHMs law: $U_{d}=I_{G E M} \times R_{s}$. Example with $R s=50 \mathrm{k}$, at $10 u A$ the voltage drop is 500 mV .
- G-AVD works with a single HV supply
- GEM voltages are proportionally coupled like R-Divider Voltages
- During ramp- up and ramp-down, all GEM voltages are scaled in proportion
- The current through R-divider I_{R} is constant
- The current through Active stabilizer I_{A} is dynamic
- The total HV supply current is $I_{R}+I_{A}$
- Monitoring of I_{A} over a diode gives prompt feedback on current changes due to high load, sparcs etc

APIC-TPIC Analogue Pickup Trigger Pickup

```
Orders for > 10 APIC's are pending
Need ~ 1 month resources for finalization (new PCB)
TPIC boxes require 1-2 month new PCB design and proto tests
```


APIC

Analogue Pickup box

APIC principle

Laplace analysis of the chain is composed in several operators, including CSA

Gamma-n shaper

$$
\mathrm{H}_{\text {shaper }}(\mathrm{s})=\frac{\mathrm{Q}}{\mathrm{C}_{\mathrm{f}}}\left\lceil\frac{\tau_{0}}{1+\mathrm{s} \tau_{0}}\right]\left[\frac{\mathrm{A}}{1+\mathrm{s} \tau_{0}}\right]^{\mathrm{n}}
$$

Inverse to Laplace $=>\mathrm{V}(\mathrm{t})$ signal in time:

$$
U_{n}(t)=\left[\frac{n^{n} Q A^{n}}{C_{f} n!}\right]\left[\frac{t}{\tau p}\right]^{n} e^{-n \frac{t}{\tau p}}
$$

Gamma (t) function of order n with τp peaking time With 2 integrators we have order $n=2$

$\mathrm{U}_{\mathrm{n}}(\mathrm{t}) \sim \mathrm{Q} / \mathrm{C}\left[\mathrm{t} / \tau_{\mathrm{p}}\right]^{2} \exp \left\{2\left[\mathrm{t} / \tau_{\mathrm{p}}\right]\right\}$

Peak proportional to charge Q
First derivative $=0$
Relation between peaking and shaping time

$$
\tau_{\text {peak }}=n \cdot \tau_{0}=2 \tau_{0}
$$

CSA Charge Sensitve Amplifier

- Discrete, JFET CSA developed in 2006-2012 by my students* for 14 bit dyn range of the ALICE EMCal.
- In 2013, revised layout by S.Martoiu
- $\mathrm{ENC}=200 \mathrm{e}+3.2 \mathrm{e} / \mathrm{pF}{ }^{*} \mathrm{Cin}(\mathrm{pF})$--- Risetime 15 ns
- In 2014 , slightly modified for APIC - TPIC

Step response to 1 ns LED pulse on APD

* Yaping Wang et al. NIM A 687 (2012) 75-81

APIC box*

- PCB design for Quantity reproduction pending

APIC test results

bipolar CSA-Shaper $\tau_{p}=100 \mathrm{~ns}$

70fC CSA negative

Gamma-2 shape

$$
\tau_{\text {peak }}=100 \mathrm{~ns}
$$

FE-55 spectrum with APIC on GEM

50 fC Calibration pulser (part of APIC)

Tuned to deliver 50 mV CSA $=50 \mathrm{fC}$

TPIC

TPIC Trigger (separate box*)
Zero -Cross discriminator
Variable Threshold
Variable NIM pulse lenght

Zero-cross Trigger box (latency 110 ns)

Analogue in from APIC

- Basic Circuits tested OK, component tuning required.
- PCB design required for test with APIC

Peak position independence
 for Gamma-2 shapers in practise

Remaining
"walk" of ca 10 ns
will be tuned in
final version

Zero-cross trigger

Zero-crossing => threshold independent Trigger point use pos. slope electronically

APIC conclusion

- APIC for charge-monitoring on MPGD meshes (also APD or PIN diodes)
- Voltage charge gain variable up $64 \mathrm{mV} / \mathrm{fC}$
- APIC calibration pulser 40 fC
- $2^{\text {nd }}$ Order electronics results in perfect Gamma-2 time-function
- Default 100 ns peaking time (any other can be implemented)
- Very low noise level
- High charge resolution: Linearity, low noise, peak-amplitude invariance
- Charge Monitoring output for Oscilloscopes
- 50 OHM analogue shaper output max 900 mV with selectable polarity
- Powered from SRS Minicrate optional power panel

TPIC conclusion

- Separate box to avoid X-coupling on input signals
- Peak-Zero-cross discriminator
- With APIC shaper input, peak-Z jitter tunable < 10 ns
- NIM output length variable 50-400 ns
- Discriminator levels from APIC 50-900 mV
- Powered from SRS Minicrate optional power panel

Femto-Meter

Started as Summer-Student project 2013

2 Femto-meters in use

Revison to include digital readout (New PCB)

Femtometer V 1.3

Principle

- Uses a temperature -compensated Si diode forward characteristics for conversion between Current and Voltage
- Dynamic range 11 decades ($10 \mathrm{fA}-1 \mathrm{uA}$)

4 Modes of operation

-V/I (Femto-Ampere) current measurement based on the logarithmic linear V / I characteristics of a calibrated and temperature-compensated Si Diode -V/Q (CSA) charge-sensitive feedback configuration, thus the output voltage corresponds to the input charge Q measured over 0.5 pF , or 2 mV per femtoCoulomb.
-V/V (electrometer) presents a very high impedance O(Tera-OHMS) at the input of a gain-1 amplifier and thus allows measurement of very high impedance voltage sources. The output voltage corresponds to the input charge measured over the input capacitance (incl. cable) i.e. very high impedance measurements may take a few seconds to charge up.
-V/I*R (Trans-Impedance TIA) represents measurement of small currents I over a user-defined resistor R in real time. The output voltage is $V=1 * R$. The internal 5 GOHM resistor can be used to measure currents of the order $20 \mathrm{pA}(100 \mathrm{mV})$ and to monitor them in real time.

Features

- 4 conversion functions $\mathrm{V} / \mathrm{I}, \mathrm{V} / \mathrm{Q}, \mathrm{V} / \mathrm{V}, \mathrm{V} / \mathrm{R}$
- Portable, battery powered, sparc protected
- Dual range: 10fA-10pA / 1pA-1 uA
- Moving coil display
- Oscilloscope and filtered DVM outputs
- 2 Calibration points
- Temperature compensated
- Positive and negative inputs
- Giga.... Tera-OHM meter function

Application GEM Anode current

GEM Amplification Ramp-down*

Application GEM-foils resistivity in vacuum*

With increasing vacuum and externally applied HV field, the GEM foil leakage current after some time indicates Orders > 50 GOHM

Summary

- We have a few interesting electronics projects
- The presented list is a subset
- In most cases, 90% of the R\&D and prototyping is done
- We need resources/students for final characterization and production
- Volume production for RD51 is planned but requires more work and more resources
- Students with appropriate competences in electronics are welcome

