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Particle Flow calorimetry

Particle Flow (imaging) calorimetry for future LC (or at LHC & HL-LHC)
Introduced to improve the energy resolution on jets (calorimeters inside the coil):
Granularity + software — match tracks & showers — use calorimeters only for neutrals
Works till jet cone too narrow — minimise confusion with small cells & compact showers

General requirements on sensitive medium (e.g. Si, Sc, Gas)

Small Moliere radius, large-area & thin sensors, high sampling fraction

[LC: + other technical requirements (front-end electronics on PCB, power-pulsing, self-trigger)]
... gas detectors apparently not favoured

in calorimeters

LR
. &
o ¢

Charged ;'
Hadrons

Particle Jet Energy depositions

.....

a9 .

Parton level

" |Hadron -




visible energy (keV)

Sampling with MPDG/Micromegas

Still, (Micro Pattern) gas detectors present several advantages
Cheap (argon), proportional mode, large area, fine segmentation, no ageing, no rate dependence

Micromegas, 3 mm drift gap, 1x1 cm”™2 pads
MIP ~ 0.3 keV (15 e- MPV), Moliere radius already high (4.5 cm) but fine for HCAL

HCAL (1.5 cm Fe absorbers), 50 GeV pion shower (Geant4)

@ shower max.: 300 keV / layer, 60 keV in central pad with fluctuations up to 300 keV
In usual Ar-CO2 mix.: all electrons arrive at the mesh in <75 ns

ECAL (2.5 mm W absorbers), 50 GeV electron shower (Geant4): 180 keV in central pad

HCAL - Energy Profile and energy in central pad @ shower maximum ECAL - Central pad energy
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Possible mechanical designs

Target area for LC/SIiD HCAL is 3000 m™2, layer of 3x1 m”™2 to fit in 1.2 cm absorber gaps

— Bulk (better suited than InGrid), implies lamination of photo-films+mesh on PCB
Size limitations from PCB manufacturer, Cabling of ASICs, Rui's workshop

Back In 2011, we choose 1x1 m”"2 ~ (32x48 cm”™2) * 6
— spacers between PCBs (dead zones ~ 2%), we are currently working on 48x48 cm”2 units.

Design strongly constrains by thickness requirements of ~ 1 cm
— No screws, everything is glued (sealed, “no way back”)

PCB
Internal + bulk

spacer (3 mm) (1.5 mm)

SS plate (2 mm)
+ copper foil (5 um)

5 mm




Readout options for EM showers

No space available for active cooling inside LC calorimeters
— power-pulsing + low-power electronics (save on analogue part)

ECAL should measure showers and MIP tracks
- large dynamic range (0.1-1000 MIPs) & high ADC resolution (e.g. 16-bits)

Digital option (16-bit — 1-bit) works if Nparticle / cell < 1
This depends on relative size of shower cone & cell

For ECAL = use pixels or stick to analogue readout (in which case, intrinsic detector linearity is a must)
For HCAL, might be good enough...

ECAL W-Ar: Digital response (1x1 cm”2 pads) — Energy resolution
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Readout options for H showers

| ABSORBER

Digital option: shower transverse size VS cell size
H shower = EM part (from pi0, eta) + H part (n, pi, p...) |
EM fraction increases with H energy N
- Digital might work at “low” energy

EM.
COMPONENT

} HADRONIC
COMPONENT
Absorber choice is important (R _(W)<R _(Fe))

Semi-digital option (1-bit — 2-bit) to compensate geometrical saturation
Relies on intrinsic detector linearity, favours MPGD VS saturated devices (e.g. RPCs)

Response and resolution to single pions of a 11 A;,; deep Fe/Ar DHCAL with 1x1 cm? cells

Ebeam (GeV)
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1x1 m”2 prototype performance

Already reported in RD51, this is just a reminder of important results

Combined test with RPC (CALICE SDHCAL SPS/H2)
The expected geometrical saturation is observed (deduced from longitudinal profiles)

Standalone test (SPS/H4), findings should hold for any MPGD

Excellent uniformity (eff. 95%, abs. variation of 1% RMS)

No effect of rate on response (verified up to 30 kHz pion showers, beam of 1x1 cm”2)
Except during occasional sparks (107-5 / shower, EM core fluctuations, nuclear recoils)
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Magnetic field & spiralling electrons

Colliding beam experiment with Barrel, 2 Endcaps [Calorimeters inside solenoid]

Endcap: No ExB effects, drift velocity unchanged
Transverse diff. reduces with omega.tau, Rather limit possibly closer

Barrel: more problematic, high-energy delta-electrons
Lorentz force + initial momentum - travel over a few cm!

Was simulated for an ECAL geometry (2.5mm W + 2.5 mm Ar)

¥
- _“\:'

*

"

Small effect on EM shower shape (log-scale below!) but large on measured energy & resolution
For hadron shower, impact should be less (high track density in EM core only), to be simulated

(can be identified and removed?)

Energy resolution to electrons in magnetic field
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Sampling with Resistive Micromegas

Guarantee stability in showers by suppressing sparks

The RC network implies that the charge stays on the R-electrode for a while, changing locally the
voltage: above some charge the field reduces significantly, avoiding sparks.

But might comprise the intrinsic linearity of MPGD, depending on the scenario

Time-dependent charge-up effects, the simplest model: all electrons arrive at the same time

* Effective capacitance (transverse size of the avalanche), relates dQ to dV, 1 pF for R =2.sigma (sigma of 325 um)
* RC constant (geometrical capacitance)

* Gain (GO, voltage dependence)

>>1/Rate, fluctuations around mean value reached after Tt = RC

T ~ 1/Rate, continuous charge-up with positive fluctuations above 0 V

1<<1/Rate, charge-up during event if total charge high enough
- linearity degradation at low rate
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Resistive electrode shapes

Different ways to introduce RC

2012-2014 (ANR-funded project: Spark Protected Large Area Micromegas)
— Spark suppression demonstrated (DESY) @ the cost of rate capability loss

Small prototypes (with embedded digital front-end electronics)

0. Continuous horizontal R grounded on the side forbidden (would increase pad-to-pad cross-talk)
1. Horizontal R layer (grounded on PCB side) with meanders to reduce X-talk
2. Horizontal pad-segmented R to avoid X-talk with through-PCB via for grounding
3. Vertical R, so-called embedded resistance contacting R and readout pads
(did not work because of fabrication errors, much progress since then...)

Efficiency loss VS ebeam rate
= 1.05
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Electrode resistivity

Resistive electrode shape

Horizontal R not suited for large-area (R linearly adds up), through-PCB via not cost effective
Vertical R fully scalable — stick to embedded R and minimise rate effects, i.e. minimise RC

What is the minimal resistivity needed to suppress sparking? Buried resistor
Empirical approach:
Prototypes with resistivity varying over several orders of magnitude

SCREAM (Sampling Calorimetry with Resistive Anode Micromegas
— Demokritos (T. Geralis), CEA/Irfu (M. Titov), IN2P3/LAPP »

What is the effect of RC on signal magnitude?

Board for Gassiplex RO

Star, 400 kQ, 1 =40 ps Mirror, 4 MQ, 1= 0.4 ms Snake, 40 MQ, T=4 ms

Green dot = R-pad contact, blue dot = RO-pad contact




Experimental protocols

What is the effect of RC on signal magnitude?
— Measure influence of detector current (rate & dE/dx) on gas gain

1. High rate (t>>1/Rate) Rate scan @ constant dE/dx: X-gun
2. Low rate (1<<1/Rate) dE/dx scan @ constant rate: GEM-injector
3. Medium Rate (1~1/Rate) Rate scan @ variable dE/dx: pion beam (showers)

3. Beam ADC sum VS Rate J
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High rates

Detector time constant >> event rate
Influence of one event on next one? Yes, of course.

Setup 1: 8 keV X-rays, Rate [10,100] MHz - measurable current on HV-supply, gas gain up to 1073

At given rate, gain drops and quickly stabilises (evacuated Q ~ incoming Q on R pad)
Departure from linear response calculated from log-fit.

Extrapolation @ 1 MHz yields deviations of ~0.5%, 1%, 10% (Star, Mirror, Snake).

Star, 400 kQ, T=40 us

Mirror, 4 MQ, T=0.4 ms

Snake, 40 MQ, T=4 ms

Response - collim. 1/8 em2 - 470V - star
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| ow rates

Detector time constant << event rate
Influence of first primary electrons space charge on last primary e- multiplication? Not sure...

Setup 2: GEM injector (Geff up to 800) + low activity 55Fe source (100 Hz event rate) + Pocket MCA
After diffusion, primary electrons arrive at the mesh within +/- 65 ns, distributed with +/- 325 um
Bulk gain from 1072 to 10"4

Ability of R pad to charge-up given by its capacitance only (RC does not matter here)
Ceff ~ S with S the spread of the Q distribution onto the pad ( ~ 1 pF)

Saturation of readout at overall gain (Bulk*GEM) of 1075, pity, GEM & Bulk could go higher.
Comparing response curves (photopeak VS Vgem) in R and non-R prototypes:
Slopes slightly lower for R-prototypes, any effect? More test needed, probably at higher gains.
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Intermediate rates

Intermediate rates: Detector time constant ~ event rate
Events influence each other if dE/dx high enough

Setup 3: Rate scan in test-beam (pion with or w.0. absorber (2 int. length of iron)
Runs @ beam intensity of: 0.5, 5, 50, 500 kHz/cm”"2
Shaping time of Gassiplex chips (1 us) — last point only useful for sparking study

No absorber — MIPs yield small charge, average measured charge constant with rate
With absorber — Showers yield potentially much larger charge.
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Operation in showers (1)

Under high deposited charge, we observed a pedestal shift

The shift seems to be proportional to the deposited charge
It shows up strongly in the non-R prototypes and 1 R with segmented R-pad
- Implies corrections when measuring the energy

We think we see the small negative coupling between pads through the mesh
— This coupling is strongly suppressed with full R-pads but not with segmented R-pads
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Operation in showers (2)

During rate scan (0.5-500 kHz/cmZ2), the mesh currents are monitorec
Defining a spark as a high current peak, all R-prototypes are spark-free
— decrease the resistivity further down - 500
& improve rate capability & linearity further up! 2
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Conclusions

* A Micromegas calorimeter should incorporate resistive
elements to guarantee stability. For most applications, it seems
that this can be done without spoiling the intrinsic linearity &
high rate capability of the detector. More work is needed to
guantify this:

- Models & protocols
- New prototypes with lower R

— Test-beam (with electrons?)

 This talk mostly focused on resistive technology. Sorry for that
as mechanical designs & production aspects are as important.
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