

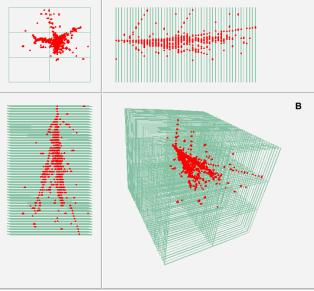
Imaging Calorimetry with RPCs

José Repond Argonne National Laboratory

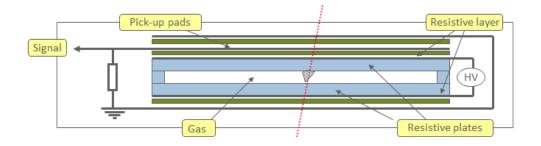
RD51 meeting (by phone) March 18, 2015

Introduction

Imaging calorimetry


Clear trend in design of calorimeters for future experiments (Dual readout concept still unproven)

Resistive Plate Chambers - RPCs

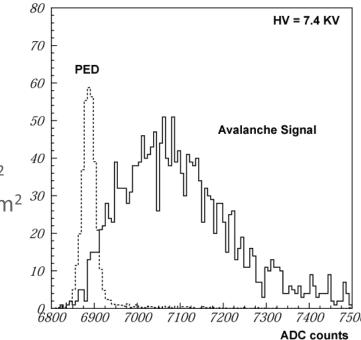

Excellent choice as active as active medium Cheap, reliable, thin, flexible in design...

The DHCAL

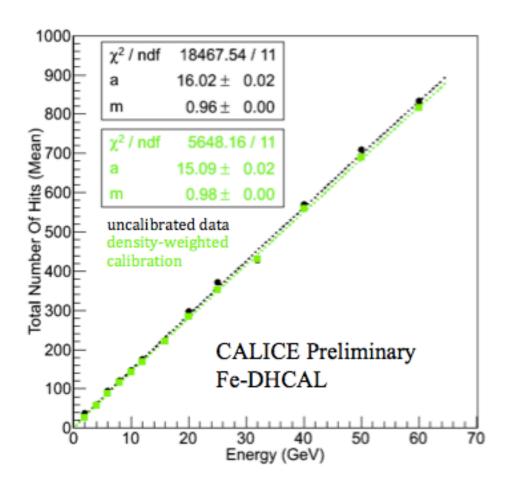
Large prototype built as part of the CALICE project >50 layers each a 1 x 1 m² Just short of 500,000 readout channels Extensive tests in the Fermilab and CERN test beams

Resistive Plate Chambers for Calorimeters

RPCs are essentially digital devices


Broad avalanche charge spectrum

Low density gas, little hydrogen


Not sensitive to low energy neutrons, photons

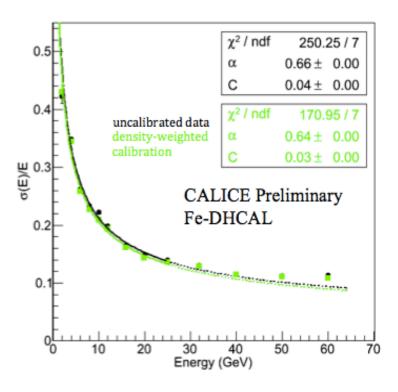
Very fine segmentation of the readout possible

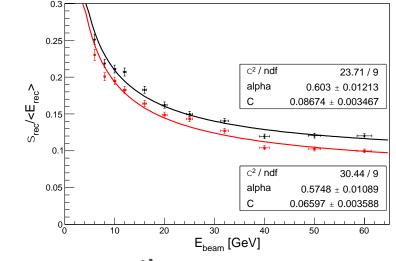
2-glass design: average pad multiplicity ~1.6 for 1 x 1 cm²
1-glass design: average pad multiplicity ~ 1.05 for 1 x 1 cm²
→ possibility for even finer segmentation

Response of the DHCAL to pions

(Density-weighted) calibration improves linearity

Close to linear up to 60 GeV


Fit to power law aE^m, where **m** is a measure of saturation


DHCAL - Resolutions

Hadronic Resolution

Calibration improves resolution somewhat Saturation (=multiple hits/pad) degrades resolution > 30 GeV Stochastic term of $64\%/\sqrt{E}$ (adequate for hadron calorimetry)

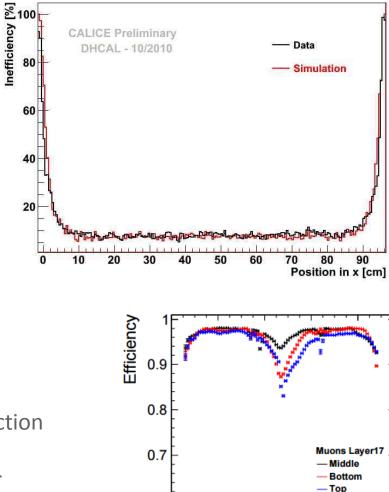
Software compensation

Assume that density of hits correlated to density of particles Apply weights to each hit depending on the density of hits

 \rightarrow Significant improvement of 7 – 15%

Design/construction problems

Plastic channels


Used to enclose the gas volume Extrusion not perfect Sides not perfectly parallel

 \rightarrow Thickness of gas gap larger at edges \rightarrow Losses of efficiency at edges

Need better tolerances on channels

Bending of Readout boards

Initially boards were perfectly flat Noticed some bending two years after construction Reasons for bending not known Leads to loss of efficiency at center of chamber

20

40

60

Position in x [cm]

0.6

۲O

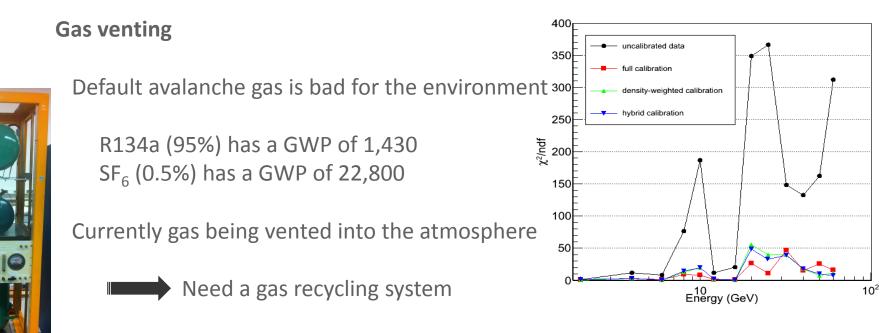
Need to constrain boards mechanically within cassettes

80

Design/construction problems

Loss of efficiency for whole chambers

Used some 'two-component artist paint' as resistive layer During operation of DHCAL in test beam loss of efficiency for entire chambers (<5%) Problem traced back to chemical reaction at HV lead leading to high resistance Some chambers recovered by increasing the HV


Use of Kapton foil as resistive layers (commercially available)

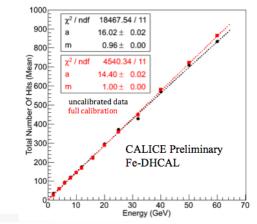
Operational Problems

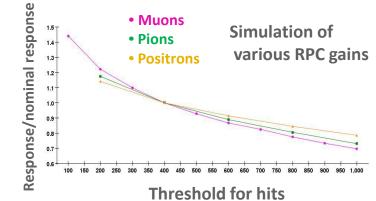
Strong temperature dependence of response

Need to lower power consumption and have better temperature control

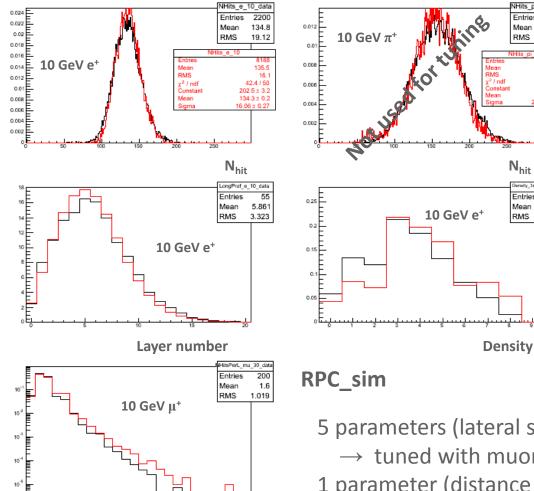
Started assembly of a prototype \rightarrow **no support to complete work**

Issues with the data analysis


Calibration = Equalization of the RPC responses


- A) Particle dependence of equalization
 - Individual equalization for each particle type
- B) Density dependence of equalization

Low efficiency irrelevant for high density sub-showers Standard equalization procedure leads to overestimation of hits at high energies Assume density of hits correlated with density of particles in sub-shower


Development of density-weighted equalization schemes

Work in progress

Simulation of the RPC response

Showers

0 data

2200

157.7

32.33

154.4

95.42 / 98

156 ± 0.4

Entries

Mean

RMS

N_{hit}

Entries

Mean

RMS

ensity_3e3_e_10_data

10

3.429

1.937

Simulated with GFANT4 Energy deposits in gas volume of RPCs taken as seeds for avalanches

Avalanches

Simulated with a standalone program: **RPC_sim**

- 5 parameters (lateral spread, charge offset, threshold)
 - \rightarrow tuned with muons
- 1 parameter (distance between avalanches)
 - \rightarrow tuned with electrons

Absolute prediction for pions

J.Repond: Imaging Calorimetry with RPCs

N_{hit}

Next Generation DHCAL I

1-glass design (thinner, average pad multiplicity close to 1, higher rate capability)

First tests encouraging (arXiv: 1501.05907, submitted to JINST)

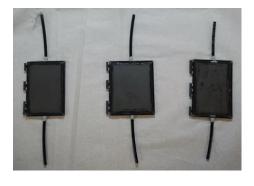
In the future will consider 1-glass design as default

Overall thickness, including readout board $\sim 3 - 4$ mm

Resistive Plates

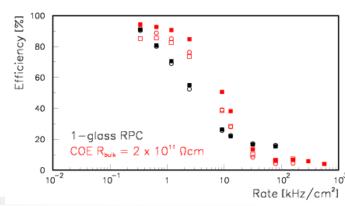
Current RPCs show loss of efficiency for rates > 100 Hz/cm² Soda-lime glass (default) has a bulk resistivity of ~10¹³ Ω cm

Together with COE college (Iowa) developing semi-conductive glass with $R_{bulk} \simeq 10^8 - 10^{10} \Omega cm$


1.2mm gas gap

Mylar

Resistive paint


Built 3 mini-RPCs and tested in Fermilab test beam

Efforts not supported by the DOE

Signal pads

-HV

1.1mm glass

Aluminum foil

Next Generation DHCAL II

Electronic readout

Remain with 1-bit Token ring passing Lower power consumption (currently ~0.5 mW/channel) → power pulsing? Single readout board containing both pads and FE-electronics (currently use conductive epoxy to join separate pad and front-end boards)

Effort not supported by the DOE

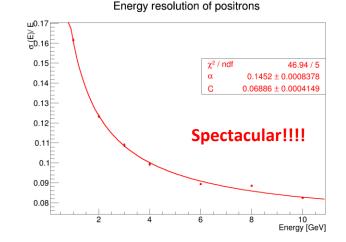
RPC-DHCAL as **ECAL**?

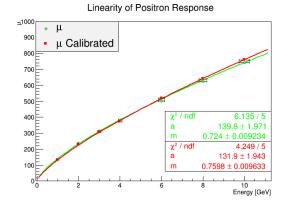
Saturation of response

Due to 'large' pad size

Smaller pad size not meaningful, due to average pad multiplicity of 1.6

1-glass design


With cosmic rays find an average pad multiplicity close to 1


But in simulation

Need to eliminate avalanches close to another one Limitation for use as ECAL?

Tests needed

1-glass RPC stack Very fine segmentation, say 0.25 x 0.25 cm²

Imaging calorimeters do not need to be linear

13

Conclusions

The DHCAL

A RPC-based based hadron calorimeter with 1-bit resolution per channel

Extensive tests

In the Fermilab and CERN test beams \rightarrow Validation of this technical approach

Several issues discovered

Requires design changes or more sophisticated data treatment \rightarrow All have (proposed) **solutions**

This technology for an ECAL?

Probably possible, but needs further tests

Support for the DHCAL in the U.S.

All but vanished

J.Repond: Imaging Calorimetry with RPCs