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Timepix Detector

S semiconductor
sensor layer

common electrode (negative)
e

single pixel

B bump bondin read-out cell

connection

A asic

developed at CERN in the Medipix collaboration
in collaboration with EUDET.

Sensor ASIC: 256 x 256 pixel

pixel pitch: 55 ym
0.25 um CMOS technology

pixel electrodes (ground)

The tracks shown here correspond
to 110 um pixel pitch and a CdTe sensor

RD51 - 20.3.2015 — Thomas Gleixner 2



\
‘“ ERLANGEN CENTRE
. FOR ASTROPARTICLE
= 17 pysics
h \ %

We can measure the particle tracks
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Our goal is to identify Ovbb events

Two electrons with a common point of origin and about 3 MeV kinetic energy

O = N W H» 1O N 0 ©
T

Their form can change a lot
due to random walk of the electrons
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Identifying Alpha particles is easy

We already showed a reduction by a factor > 4.32x10° .
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Identifying Muons is also easy

Our estimation is a reduction >104, no experimental test yet
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The challenge is identifying electrons

Alpha particles “always” form a blob

Muons “always” form a straight line

The electron path is mostly random

The two electron path of Ovbb is mostly random too
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Using neural networks

(or similar classification algorithms)

1. we define n-features that can be calculated from the track
For example: the number of counting pixel
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Using neural networks

(or similar classification algorithms)

1. we define n-features that can be calculated from the track

2. we simulate a lot of events of the types we want to
discriminate

For example: single electrons and Ovbb

12 T \ T T \ 300 18 T T T T T T T \ 800

10 250 1or ] 700
141 1B+ 600
sl 200 12 | B 500
10 - 4
6 150 | | 400
4r 100 6 | B 300
4 B 200
2+ 50 ol i 100
0 L L L L L 0 0 L L L L L L L 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 16 18

simulated Ovbb simulated electron



\

\\\' ERLANGEN CENTRE

. FOR ASTROPARTICLE
-

]
HV PHYSICS

Using neural networks

(or similar classification algorithms)

1. we define n-features that can be calculated from the track

2. we simulate a lot of events of the types we want to
discriminate

3. We calculate the features for each simulated event

4. We train the ANN with these features (telling the ANN the event type)

5. To identify an event, we calculate its features, and give it to the ANN
which calculates a rating for the event type
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Defining the features This is the difficult part

The features should describe the characteristic differences
Between the particles that we want to discriminate

e Electron tracks are mostly straight at first
e They become curly at the end
e They show a low energy deposition (per pixel) at first, higher at the
end
e |n the Ovbb case, the same energy is distributed on two electrons
e 0vbb tracks should not show a clear start, single electrons should

e Ovbb events have two “heads” (Bragg peak), electron tracks one

. The energy weighted centroid is shifted towards the single “head” for single
electrons, more towards the not weighted centroid for Ovbb

e Eftc.
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Defining the features
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Number of pixels

The overlap between the histograms should be small

for good features.
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Applying the ANN

The classification software can rate

the event. If we choose certain rating to be
considered a certain event type, there is a
certain chance that the software will get it right
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This will lead to missclassification (unless we have perfect features)
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Spectrum of a 2%8T| y-emitter (2.6 MeV)

COvbb = I:)Ovbb X nOvbb + (1'Pelectron) X r]electron

Celectron = I:)elec:tron X nelectron + (1'P0vbb) X nOvbb

C,: counts identified as event k; P,: probability to identify event k as k

N,: number of events k
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Reconstructing the spectrum

left: after classification
right: after reconstruction
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If our simulation was correct we know P and can calculate n, reconstructing the correct
spectrum

NOvbb=COvbb+ntotaI(PeIectron 1)/( Ovbb I:)electron"l)
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Preliminary

This would probably work a lot better with 3D tracks.
The spatial resolution is not even that important.
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(the calculation for the 3D detector contains some approximations)
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Conclusions

e ANN (or RDF) can be used to discriminate even similar event types

e The efficiency depends a lot on how similar the events are and on the
available track information (3D>2D)

e A precise simulation is required for this method
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