Leopard Measurements in Trieste

Gergő Hamar for the joint group of

S. Dalla Torre, S. S. Dasgupta, G. Hamar,

S. Levorato, F. Tessarotto, D. Varga

INFN Trieste
Wigner RCP Budapest

Outline

- TGEM+MM Hybrid
- Leopard Setup
- TGEMs in study
- Charge up aspects
- Gain uniformity studies
- Photo-electron extraction vs drift field
- Photo-electron extraction vs TGEM voltage
- Comparision of different TGEMs
- Outlook

The Leopard Measurements

- Investigate microstucture of MPGDs
- RD51 Common Project
 (Budapest, Trieste, Bari)
 see talk: RD51 MiniWeek Feb.2014. G.Hamar
- Aim of the common work: systematic study of different TGEMs comparative measurements optimization of geometry

Reminder on Leopard

- High resolution scan of MPGDs with focused UV light
- Single photo-electrons: PE yield and gain separable
- Critical symmetry points
- Hole-by-hole differences

Cherenkov detector optimization

Simulation verification and tuning

Quality check + info for production

Applicability for various MPGDs

 (upto now TGEMs and standard GEMs were studied)

X [mm]

TGEM+MM Hybrid as Basic Setup in Trieste

- Standard hybrid system with:
 - Quartz window (for UV light)
 - Wire cathode: 100μm / 2mm spacing (along X axis)
 - TGEM in study
 - Bulk micromesh: 45/18 and 128μm for gap (CERN)
 - Padplane : 1D strips of 150/150 μm (alogn Y axis)
- Gas: Ar/CH₄: 30/70 and Ar/CO₂ for the long runs during the night

Data Acquisition

- Signal from connected strips of 14x100 mm²
 - Preamp : CREMAT 101
 - Canberra Amplifier
 - Leopard Board (ADC: LT1415)
 - Raspberry Pi as readout computer (remote controlled)
- Stepping motor with precision of 2.5 μm
 (the used standard step was 20-50 μm)
- UV LED pusler with 130 KHz
- Calibration with pulse generator

see talk by G.Hamar at RD51CM Feb.2014.

TGEMs in Study

 Several different TGEMs were sudied to compare:

rim, thickness, hole size, production process

ThGEM	Hole	Pitch	Thickness	Rim
Name	[<i>µ</i> m]	$[\mu \mathrm{m}]$	$[\mu \mathrm{m}]$	$[\mu \mathrm{m}]$
M1-III	400	800	400	0
DESTRO-I	400	800	400	5
C3HR-II	400	800	400	50
M2.4-G	400	800	600	0
M2.1-II	300	800	400	0

Data and Quantities

- Single photo-electron spectrum in every MP
- Compute photo-electron yield and gain for every MP

Leopard in Trie

Data and Quantities

- UV light focused onto a 50 μm spot (MP)
- Single photo-electron spectrum in every MP
- Compute photo-electron yield and gain for every MP
- Search for holes, compute "hole-level" quantities
- Default plots:
 Yield map
 Gain map
 Hole-gain distr.

Setting the Focus

Photo-electron Yield

100

Charge Up Effect

- Charge up : an area or a single hole
- The decrease of gain has been seen
- With single photo-electrons the charge up effect for photon-yield has been measured:
 - Significant increase of the photon yield has been measured with various TGEMs and gains
 - Time constant is different from the one in the change of gain
- Charge up during scans
 or: previously shine the area with high luminosity

Charging up single holes

Charging up a single hole

Gain Uniformity Studies

- Long runs for statistics on large areas
- Evaluation of the "hole-gain" distribution

Comparative test for all TGEMs

ThGEM	Applied	Standard	Number of
Name	averge gain	deviation	used holes
M1-III	39900	12.0%	317
DESTRO-I	24100	11.0%	194
C3HR-II	47100	21.6%	247
M2.4-G	76200	21.2%	268
M2.1-II	24000	8.3%	323

ΙU

Avalanche Size

- Does the size of the electron avalanche depend on the point of entering?
- Leopard :
 PE emission <=?=>
 point of entering
- Diffusion ...
- Preliminary results
 with DESTO-I
 are compatible with
 a flat distribution (?)

Effects of the Drift Field

- Optimization of drift field could be crucial
 - MIP suppression needs reversed drift field
 - HBD : close to zero field
 - For the critical symmetry points : relatively high normal drift is needed
- With the Leopard setup the point-by-point and integrated photo-electron yields can be examined

Drift Field Scan

"Critical Line" Scan

- Critical symmetry points and symmetry lines are most effected by the drift field
- Systematic study on these kind of points with
 1 dim scan at several voltage settings

Critical Line Scan: Samples

- Critical points are clearly visible
- Evolution as expected from former measurements

Critical Line vs. Drift

TGEM Voltage and Yield

- Higher U_{TGEM} means higher field on the top
- What is the minimal necessary voltage (to have max yield without sparks)

Summary

- Leopard : RD51 Common Project
- Leopard measurements in Trieste

 (INFN Trieste + Wigner RCP Budapest)
 for the COMPASS RICH-1 Upgrade
- Comparative systematic scans on 5 TGEMs
- Yield from critical symmetry points were studied wrt drift field and TGEM voltage
- Quantification of hole-gain uniformity (9-20%)
- Paper/RD51Note in preparation

Extra slides

Sparks

Long runs during nights with Ar/CO₂

