#### Floating multi-channel picoAmmeter

#### University of Zagreb

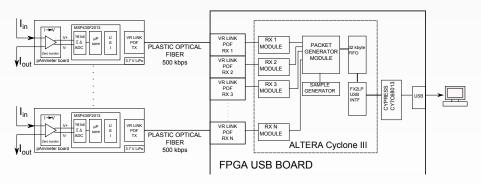
A. Utrobičić

March 19., 2015.





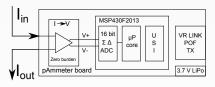
・ロト ・御ト ・モト ・モト

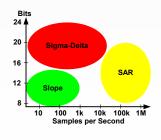

#### Current measurements requirements

- floating current measurement at high potential  $> 5 \mathrm{kV}$
- current resolution < 100 pA
- small dimensions for easier fitting to chamber
- low leakage current to ground
- ultra low power requirements for longer time measurement, when used on the battery source
- single side supply
- digital readout
- 10 channels (one current measurement for each GEM electrode + drift cathode)
- simultaneous high speed, real time readout for all channels

(日) (四) (日) (日) (日)

### Choice of the concept

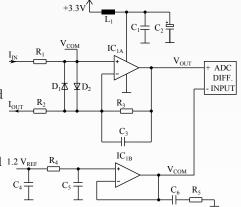

Multiple current measurement nodes send current data to the central FPGA board which is used as a data router to the PC by USB.



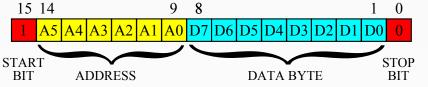

(D) (A) (A) (A)

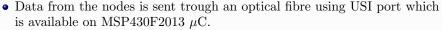
# Choice of the low power components for the current measurement node

- $\Sigma\Delta$ -ADC was chosen to fulfil resolution requirements.
- LMC6442 (4 μW, I<sub>b</sub>=5 fA typ.) was used for current signal conditioning.
- MSP430F2013 with integrated 16-bit ΣΔ-ADC and advanced low-power modes capabilities was used as a heart of the measurement node.
- Avago Versatile-Link 5 Mbps optical fibre transmitter is employed to output digitized data.
- Entire module is supplied from a single 3.7 V battery cell (Li-ion or LiPo).







(人間) とくき とくき )


# Analog signal conditioning section

- Zero voltage burden OP-amp circuit was chosen to convert current to voltage.
- Due to the zero voltage on the protection devices (D<sub>1</sub> and D<sub>2</sub>), excellent linearity can be achieved when compared to the shunt measurement.
- Common mode voltage is set to 1.2 V, which enables bidirectional  $1.2 \text{ V}_{\text{REF}}$ current measurement using differential ADC input.

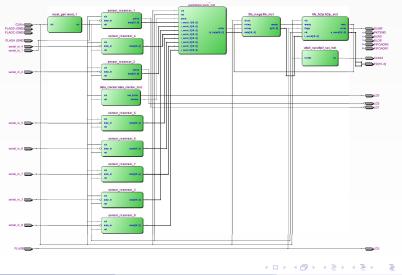


# Serial data communication trough optical link





- 14-bit asynchronous serial communication was emulated by a 16-bit serial stream, start and stop bit were added.
- By dividing the 14-bit of useful data to 6-bit address and 8-bit data part it is possible to send multiple data from the node.
- Only the current measurement is implemented for now and it is using 2 addresses.
- Temperature and  $\mu C$  supply voltage can be measured and sent over the optical link if required.

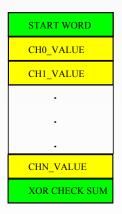



- For the purpose of the current measurement 2 words are sent out from the measurement node to create one 16-bit current value.
- Data rate is set to 500 kbps.
- Sampling frequency is set to approx. 1 kHz.
- The sampling time is crucial for the power consumption as it dictates the TX LED duty-cycle.
- Maximum LED duty cycle for this settings (2-words, 500 kbps and 1 kHz sampling time) is 6.4 %.
- Hardware is capable to work with higher current sampling rate (5 kHz max) if required. However this would imply higher power consumption.

(D) (A) (A) (A)

#### FPGA code block diagram

The entire FPGA code is written in Verilog HDL, schematics shown:




University of Zagreb ()

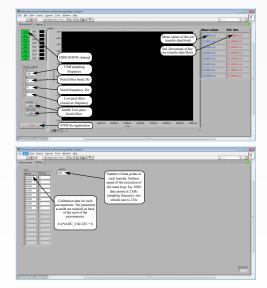
Floating multi-channel picoAmmeter

March 19., 2015. 8 /

# Packetization of data from multiple channels



- Data obtained from multiple current sensors is inserted in the packet.
- Packet consists of 16-bit start word, N 16-bit data words and 16 bit XOR checksum.
- 16-bit data words represent current values for each of the current measurement channels.
- As data is received asynchronously at 1 kHz frequency the readout should be at least twice faster.
- Packets with data from all channels are sent to FIFO at 2 kHz frequency.
- To obtain seamless streaming of data to PC over USB, 16 kWord FIFO is implemented in the FPGA.


(日) (四) (日) (日) (日)

# Communication to FPGA trough USB using LabVIEW

- Cypress FX2LP integrated USB phy (CY7C60813) is used for communication to host PC.
- FX2LP is operating in slave FIFO mode with only bulk IN endpoint enabled.
- Additional FPGA FIFO enables proper communication when host CPU is highly loaded.
- Windows driver is based on National Instruments VISA USB RAW bulk transfer, this enables easy integration to the LabVIEW application.
- Transfer speed that can be achieved between FPGA and PC host is circa 20 Mbyte/s on USB2.0 port.

# Host application

- LabVIEW library for communication to the measurements system was developed.
- Library consists of functions "FIND, OPEN, READ and CLOSE" and it can be easily integrated in any LabVIEW project.
- It requires NI VISA to be installed.
- Application is organized in two tabs: Measurement and Settings.



(人間) とくき とくき )

#### Prototype

- Ten prototypes are currently populated on a 2-layer PCB with dimensions 54×23.5 mm.
- Floating shield tied to the battery negative potential mitigates EMI radiated from the digital circuitry.
- PCB + LiPo (3.7 V, 350 mAh) battery are placed inside plastic housing with dimensions  $62 \times 30 \times 19$  mm.
- Plastic case has small pocket where NdFeB magnet is located for purpose of turning on/off picoammeter.



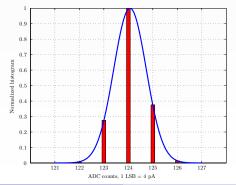
- When battery fully charged it should last approx. 9 days of continuous operation.
- There are two pins left of the optical transmitter for connecting battery charger when battery is depleted.

・ロト ・四ト ・ヨト ・ヨト

- Low-cost FPGA board with ALTERA Cyclone III, is used to implement multi-channel receiving and buffering.
- Simple optical RX daughter board for the main FPGA-USB board with 16 RX channels has been designed.
- Optical receivers are populated on FPGA daughter board.
- Board has 16 red LED diodes which indicates which channel is active.

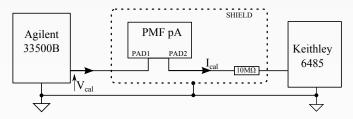


University of Zagreb ()


Floating multi-channel picoAmmeter

March 19., 2015.

< (1) × (1)


### First measurements

- PicoAmmeter was connected to the Agilent 33500B waveform generator.
- Current was set to mean value of 0.5 nA by adjusting the voltage on the protection resistors  $R_1 + R_2$  and recorded for 15 min.
- Histogram of the RAW signal from the ADC was fitted to the gaussian.





# Calibration procedure



- Keithley 6485 picoammeter was connected in series with our picoammeter and 10 M  $\!\Omega$  resistor.
- The resistor is necessary to convert voltage from Agilent 33500B waveform generator to current.
- Special care must be taken when connecting picoammeters in series, high impedance terminals of the picoammeters must be connected to each other.
- Low impedance terminals are connected to ground (Keithley) and calibration voltage (PMF pA).
- ADC data is fitted to the Keithley 6485 measurement using LSQ min. fit.

University of Zagreb ()

# Specification sheet of the prototype

- Measuring range: from -125 nA to 125 nA. It can be changed to lower by setting the internal PGA to other that 1x or by modifying  $R_3$
- **Resolution (LSB):** 4 pA at measuring range above
- FWHM: 6 pA, RAW signal, 1 kHz sampling, 15 minutes
- Sampling frequency: 1 kHz
- Current consuption: 1.5 mA at 1 kHz sampling freq
- Supply voltage: 3.3 V-5.5 V single lithium cell
- Optical connector: VR Versatile Link (Avago)
- PCB dimensions: 54x23.5x9 mm
- Isolation voltage: N/A, defined by casing and length of fibre
- Battery: LiPo 3.7 V, 350 mAh

#### Future work

- Implement autoranging feature by means of PGA (Programmable Gain Amplifier) that is already inbuilt inside the ADC of the  $\mu$ C.
- We have sent prototypes to other groups for the testing purposes and we are waiting for their feedback so we can improve the device.
- To make noise free DC/DC converter that will replace the battery supply and ensure HV isolation.
- As we are depending on the third party FPGA board, we are considering do design our custom FPGA board with optical receivers and RAM.
- We are considering usage of different interfaces to host PC than USB, ethernet?

・ロト ・回ト ・ヨト ・ヨト