
FLUKA Beginner’s Course

Advanced Geometry

2

Contents

 Body Transformations

 Lattice

3

Geometry directives

Special commands enclosing body definition:

$Start_xxx

.......

$End_xxx

They provide respectively a coordinate expansion/reduction, a

coordinate translation or a coordinate roto-translation of the

bodies embedded between the starting and the ending directive

lines.

where "xxx" stands for

“expansion“, "translat" or "transform"

4

 $Start_expansion ... $End_expansion

it provides a coordinate expansion (reduction) factor f for all bodies embedded

within the directive

$Start_expansion 10.0
SPH Sphere 5.0 7.0 8.0 50.0

$End_expansion

transforms a sphere of radius 50 centered in (+5,+7,+8)

into a sphere of radius 500 centered in (+50,+70,+80)

Directives in geometry: expansion/reduction

f 0 0 0

0 f 0 0

0 0 f 0

0 0 0 1

Putting the body in its quadric form

Axx x2 + Ayy y2 + Azz z2 + Axy xy + Axz xz + Ayz yz + Ax x + Ay y + Az z + A0 = 0

Axx Axy/2 Axz/2 Ax/2 x

Axy/2 Ayy Ayz/2 Ay/2 y

Axz/2 Ayz/2 Azz Az/2 z

Ax/2 Ay/2 Az/2 A0 1

the expansion/reduction matrix is T =

and the transformed body equation is rT (T-1)T MQUA T-1 r = 0

or [x y z 1] = 0 i.e. rT MQUA r = 0

5

 $Start_translat ... $End_translat

it provides a coordinate translation Sx,Sy,Sz for all bodies embedded within the

directive

$Start_translat -5.0 -7.0 -8.0
SPH Sphere 5.0 7.0 8.0 50.0

$End_translat

transforms a sphere of radius 50 centered in (+5,+7,+8)

into a sphere of radius 50 centered in (0,0,0)

Directives in geometry: translation

1 0 0 Sx

0 1 0 Sy

0 0 1 Sz

0 0 0 1

the translation matrix is T =

6

 $Start_transform ... $End_transform

it applies a pre-defined (via ROT-DEFI) roto-translation to all bodies embedded

within the directive

ROT-DEFI , 201.0, 0., +116.5650511770780, 0., 0., 0., cylrot
$Start_transform cylrot
QUA Cylinder 0.5 1.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 -4.0

$End_transform

transforms an infinite circular cylinder of radius 2 with axis {x=-z,y=0}

into an infinite circular cylinder of radius 2 with axis {x=z/3,y=0} (clockwise rotation)

- it allows to rotate a RPP avoiding the use of the deprecated BOX !

- note that also the inverse transformation can be used T-1

$Start_transform -cylrot

Directives in geometry: roto-translation

Sx

R Sy

Sz

0 0 0 1

the roto-translation matrix is T = T-1 =

-(R-1S)x

R-1 -(R-1S)y

-(R-1S)z

0 0 0 1

7

ROT-DEFIni
The ROT-DEFIni card defines roto-translations that can be applied, in addition to

bodies, to i. USRBIN & EVENTBIN and ii. LATTICE. It transforms the position of

the tracked particle i. before scoring with respect to the defined binning or ii. into the

prototype with the order:

 First applies the translation

 followed by the rotation on the azimuthal angle

 and finally by the rotation on the polar angle.

Xnew = Mpolar  Maz  (X + T)

WHAT(1): assigns a transformation index and the corresponding rotation axis I + J *
100 or I * 1000 + J

I = index of rotation (WARNING: NOTE THE SWAP OF VARIABLES)

J = rotation with respect to axis (1=X, 2=Y, 3=Z)

WHAT(2): Polar angle of the rotation (0 ≤  ≤ 180o degrees)

WHAT(3): Azimuthal angle of the rotation (-180 ≤  ≤ 180o degrees)

WHAT(4), WHAT(5), WHAT(6) = X, Y, Z offset for the translation

SDUM: Optional (but recommended) name for the transformation

7

8

 $Start_expansion and $Start_translat are applied when reading the geometry

 no CPU penalty (the concerned bodies are transformed once for ever at

inizialization)

$Start_transform is applied runtime  some CPU penalty

 One can nest the different directives (at most one per type!) but, no matter

the input order, the adopted sequence is always the following:

$Start_transform StupiRot

$Start_translat -5.0 -7.0 -8.0

$Start_expansion 10.0

QUA WhatIsIt +1.0 +1.0 +1.0 0.0 0.0 0.0 -10.0 -14.0 -16.0 -2362.0

$End_expansion

$End_translat

$End_transform

 Directives are not case sensitive (whereas roto-translation names are)

Directives in geometry: warnings

9

Identifying rotation angles

Let’s define the orientation of a body in the space
by a system of 3 orthogonal vectors i’, j’, k’ , whose coordinates
are expressed with respect to the fixed reference frame X,Y,Z

Then [i’ j’ k’] = (in the ZXZ convention)

where c1=cos(ψ) c2=cos(θ) c3=cos(Φ) s1=sin(ψ) s2=sin(θ) s3=sin(Φ)

k’

i’
j’

here Φ = 45o θ = 30o ψ = -60o

The obtained Euler angles can be input as azimuthal angle of

three consecutive rotations (ROT-DEFI)

X

Y

Z

10

Lattice

FLUKA geometry has replication (lattice) capabilities

Only one level is implemented (no nested lattices are allowed)

 The user defines lattice positions in the geometry and

provides transformation rules from the lattice to the

prototype region:

1. in the input with the ROT-DEFI card

2. in a subroutine (lattic.f)

The lattice identification is available for scoring

Transformations include:

Translation, Rotation and Mirroring (the last only through

routine).

WARNING:

Do not use scaling or any deformation of the coordinate

system

11

Lattice
 The regions which constitute the elementary cell (prototype)

to be replicated, have to be defined in detail

 The Lattices (replicas/containers) have to be defined as
“empty” regions in their correct location.
WARNING: The lattice region should map exactly the outer
surface definition of the elementary cell.

 The lattice regions are declared as such with a LATTICE
card at the end of the geometry input

 In the LATTICE card, the user also assigns lattice
names/numbers to the lattices. These names/numbers will
identify the replicas in all FLUKA routines and scoring

 Several basic cells and associated lattices can be defined
within the same geometry, one LATTICE card will be
needed for each set

 Non-replicas carry the lattice number 0

 Lattices and plain regions can coexist in the same problem

12

LATTICE card
After the Regions definition and before the GEOEND card the user can insert the
LATTICE cards

 WHAT(1), WHAT(2), WHAT(3)
Container region range (from, to, step)

 WHAT(4), WHAT(5), WHAT(6)
Name/number(s) of the lattice(s)

 SDUM
blank to use the transformation from the lattic routine
ROT#nn to use a ROT-DEFI rotation/translation from input
name the same as above but identifying the roto-translation by the name

assigned in the ROT-DEFI SDUM (any alphanumeric string you like)

Example

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

LATTICE 6.00000 19.00000 101.0000 114.00

Region # 6 to 19 are the “placeholders” for the first set replicas. We assign to them lattice numbers
from 101 to 114

LATTICE TARGR1 TargRep 1tra

TARGR1 is the container region using transformation 1tra

13

Example

Empty
lattice container

Prototype
regions

14

Example

Replica

Prototype
regions

For every particle
entering the replica

Its coordinates are transformed to the
prototype, where FLUKA performs the tracking

15

Example

Empty
lattice cell

Prototype
cell

Final
replica

16

Transformation by input

 Rotations/Translations can be defined with the

ROT-DEFIni card

 Can be assigned to a lattice by name or with ROT#nnn SDUM

in the LATTICE card

 ROT-DEFIni cards can be consecutive (using the same index

or name) to define complex transformations

WARNING:

Since matrix multiplication is not commutative the order of the

Rotation/Translation operations in 3D is important.

17

Numerical Precision
 Due to the nature of the floating point operations in CPU, even if the

transformation looks correct the end result could be problematic

This small misalignment between lattice/transformation/prototype could lead to

geometry errors

 Use as many digits as possible to describe correctly the prototype and lattice cells

as well as the transformation.

It is mandatory that the transformation applied to the container makes the latter

EXACTLY corresponding to the prototype

 One can use a FREE and FIXED card before and after the ROT-DEFI to input

more than 9 digits

 GEOBEGIN WHAT(2) allows to relax the accuracy in boundary identification

(USE WITH CAUTION)

Prototype

18

Lattice: Important remarks

 Materials and other properties have to be assigned only to the
regions constituting the prototype.

 In all (user) routines the region number refers to the
corresponding one in the prototype.

 The SCORE summary in the .out file and the scoring by
regions add together the contributions of the prototype region
as well as of all its replicas!

 The lattice identity can be recovered runtime by the lattice
number, as set in the LATTICE card, or available through the
GEON2L routine if is defined by name

 In particular, the LUSRBL user routine allows to manage the
scoring on lattices in the special USRBIN/EVENTBIN
structure.

19

The USRBIN/EVENTBIN special binning

EVENTBIN or USRBIN with WHAT(1)=8 :

Special user-defined 3D binning. Two variables are

discontinuous (e.g. region number), the third one is continuous,

but not necessarily a space coordinate.

Variable Type Default Override Routine

1st integer region number MUSRBR

2nd integer lattice cell number LUSRBL

3rd float zero FUSRBV

20

Tips & Tricks

 Always remember that the transformation must bring the container onto

the prototype and not viceversa!

 You can always divide a transformation into many

ROT-DEFI cards for easier manipulation.

 Rotations are always around the origin of the geometry, and not the

center of the object.

 To rotate an object, first translate the object to the origin of the axes

 Perform the rotation

 Move it by a final translation to the requested position.

Of course with the inverse order since everything should apply to the replica

 In order to define the replica body, you can clone the body enclosing the

prototype (assigning it a new name!) and apply to it the $Start_transform

directive with the inverse of the respective ROT-DEFI transformation.

21

Tips & Tricks
GEOBEGIN
...
RPP CollProt -540.0 -460.0 -20.0 20.0 100.0 300.0
$start_transform –rotColl *

RPP CollRepl -540.0 -460.0 -20.0 20.0 100.0 300.0
$end_transform
...
GEOEND
ROT-DEFI, 1.0, 0.0, 0.0, 0.0, 0.0, -350.0, rotColl [A]
ROT-DEFI, 201.0, 0.0, -15.0, 0.0, 0.0, 0.0, rotColl [B]
ROT-DEFI, 1.0, 0.0, 0.0, -500.0, 0.0, 200.0, rotColl [C]

A-1

C-1

B-1

* Remember: if R=CBA, then R-1=A-1B-1C-1

22

Tips & Tricks

 The Geometry transformation editor in flair can read and
write ROT-DEFI cards with the transformation requested

 An easy way of creating a replica and the associated
transformation is the following:

1. Select the body defining the outer cell of the prototype

2. Clone it with (Ctrl-D) and change the name of the clones. Click on
“No” when you are prompted to change all references to the
original name.

3. Open the Geometry transformation dialog (Ctrl-T)

4. Enter the transformation of the object in the listbox

5. Click on “Transform” to perform the transformation on the clone
bodies

6. Click on “Invert” button to invert the order of the transformation

7. Enter a name on the “ROT-DEFIni” field and click
“Add to Input” to create the ROT-DEFIni cards

8. Now you have to create manually the needed regions and the
LATTICE cards

