

Advanced Geometry

FLUKA Beginner's Course

Contents

- Body Transformations
- Lattice

Geometry directives

Special commands enclosing body definition:

```
$Start_xxx

where "xxx" stands for

"expansion", "translat" or "transform"
```

They provide respectively a coordinate expansion/reduction, a coordinate translation or a coordinate roto-translation of the bodies embedded between the starting and the ending directive lines.

\$start_transform	Trans: 🔻			
♦ \$end_transform				
\$\int \\$\\$start_expansion	f:			
\$\rightarrow\$ \$\\$end_expansion				
\$start_translat	dx:	dy:	dz:	
\$\rightarrow\$ \$\rightarr				

Directives in geometry: expansion/reduction

\$Start_expansion ... \$End_expansion

it provides a coordinate expansion (reduction) factor **f** for all bodies embedded within the directive

\$Start_expansion 10.0 SPH Sphere 5.0 7.0 8.0 50.0 \$End_expansion

∕ \$start_expansion	f:10.0		
SPH Sphere	×: 5.0 R: 50.0	у: 7.0	z: 8.0
\$end_expansion			

transforms a sphere of radius 50 centered in (+5,+7,+8) into a sphere of radius 500 centered in (+50,+70,+80)

Putting the body in its quadric form $A_{xx} x^2 + A_{yy} y^2 + A_{zz} z^2 + A_{xy} xy + A_{xz} xz + A_{yz} yz + A_x x + A_y y + A_z z + A_0 = 0$ or $[x \ y \ z \ 1]$ $\begin{bmatrix} A_{xx} & A_{xy}/2 & A_{xz}/2 & A_{x/2}/2 & A_{x/2}/2 & A_{y/2}/2 & A_{y/2}/2 & A_{y/2}/2 & A_{z/2}/2 & A_{z/2}/$

Directives in geometry: translation

\$Start_translat ... \$End_translat

it provides a coordinate translation S_x, S_y, S_z for all bodies embedded within the directive

```
$Start_translat -5.0 -7.0 -8.0
SPH Sphere 5.0 7.0 8.0 50.0
$End_translat
transforms a sphere of radius 50 centered in (+5,+7,+8)
into a sphere of radius 50 centered in (0,0,0)
```

\$start_translat	dx: -5.0	dy: -7,0	dz: -8.0
SPH Sphere	×: 5.0 R: 50.0	у: 7.0	z: 8.0
♦ Send translat			

the translation matrix is
$$T = \begin{bmatrix} 1 & 0 & 0 & S_x \\ 0 & 1 & 0 & S_y \\ 0 & 0 & 1 & S_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Directives in geometry: roto-translation

\$Start_transform ... \$End_transform

it applies a pre-defined (via ROT-DEFI) roto-translation to all bodies embedded within the directive

```
ROT-DEFI , 201.0, 0., +116.5650511770780, 0., 0., cylrot
$Start transform cylrot
QUA Cylinder 0.5 1.0 0.5 0.0 1.0 0.0 0.0 0.0 -4.0
$End transform
transforms an infinite circular cylinder of radius 2 with axis \{x=-z,y=0\}
into an infinite circular cylinder of radius 2 with axis \{x=z/3,y=0\} (clockwise rotation)
```

the roto-translation matrix is
$$T = \begin{bmatrix} & & S_x \\ & R & S_y \\ & & S_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T^{-1} = \begin{bmatrix} & & -(R^{-1}S)_x \\ & R^{-1} & -(R^{-1}S)_y \\ & & -(R^{-1}S)_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T^{-1} = \begin{bmatrix} -(R^{-1}S)_x \\ R^{-1} & -(R^{-1}S)_y \\ -(R^{-1}S)_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- it allows to rotate a RPP avoiding the use of the deprecated BOX!
- note that also the **inverse** transformation can be used T-1

ROT-DEFIni

The ROT-DEFIni card defines roto-translations that can be applied, in addition to bodies, to i. USRBIN & EVENTBIN and ii. LATTICE. It transforms the position of the tracked particle i. before scoring with respect to the defined binning or ii. into the prototype with the order:

- First applies the translation
- followed by the rotation on the azimuthal angle
- and finally by the rotation on the polar angle.

$$\mathbf{X}_{\text{new}} = \mathbf{M}_{\text{polar}} \times \mathbf{M}_{\text{az}} \times (\mathbf{X} + \mathbf{T})$$

WHAT(1): assigns a transformation index and the corresponding rotation axis I + J * 100 or I * 1000 + J

I = index of rotation (WARNING: NOTE THE SWAP OF VARIABLES)

J = rotation with respect to axis (1=X, 2=Y, 3=Z)

WHAT(2): Polar angle of the rotation ($0 \le \vartheta \le 180^{\circ}$ degrees)

WHAT(3): Azimuthal angle of the rotation (-180 $\leq \phi \leq$ 180° degrees)

WHAT(4), WHAT(5), WHAT(6) = X, Y, Z offset for the translation

SDUM: Optional (but recommended) name for the transformation

ROT-DEFI	ld: 1	Axis: Z ▼	Name: 1tra	
	Polar: 0.0	Azm:		
	Δx:	Δу:	∆z: -10.0 7	

Directives in geometry: warnings

\$Start_expansion and \$Start_translat are applied when reading the geometry → no CPU penalty (the concerned bodies are transformed once for ever at inizialization)

\$Start_transform is applied runtime → some CPU penalty

One can **nest** the different directives (at most one per type!) but, no matter the input order, the adopted sequence is always the following:

```
$Start_transform StupiRot

$Start_translat -5.0 -7.0 -8.0

$Start_expansion 10.0

QUA WhatIsIt +1.0 +1.0 +1.0 0.0 0.0 0.0 -10.0 -14.0 -16.0 -2362.0

$End_expansion

$End_translat

$End_transform
```

Directives are not case sensitive (whereas roto-translation names are)

Identifying rotation angles

Let's define the orientation of a body in the space by a system of 3 orthogonal vectors \mathbf{i}' , \mathbf{j}' , \mathbf{k}' , whose coordinates are expressed with respect to the fixed reference frame X,Y,Z

Then [i'j'k'] =
$$\begin{bmatrix} c_1c_3 - c_2s_1s_3 & -c_1s_3 - c_3c_2s_1 & s_2s_1 \\ c_2c_1s_3 + c_3s_1 & c_1c_2c_3 - s_1s_3 & -c_1s_2 \\ s_3s_2 & c_3s_2 & c_2 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
 (in the ZXZ convention)

where $c_1=\cos(\psi)$ $c_2=\cos(\theta)$ $c_3=\cos(\Phi)$ $s_1=\sin(\psi)$ $s_2=\sin(\theta)$ $s_3=\sin(\Phi)$

The obtained Euler angles can be input as azimuthal angle of three consecutive rotations (ROT-DEFI)

Lattice

FLUKA geometry has replication (lattice) capabilities

Only one *level is implemented* (no nested lattices are allowed)

- The user defines lattice positions in the geometry and provides transformation rules from the lattice to the prototype region:
 - in the input with the ROT-DEFI card
 - 2. in a subroutine (lattic.f)

The lattice identification is available for scoring

Transformations include:

Translation, Rotation and Mirroring (the last only through routine).

WARNING:

Do not use scaling or any deformation of the coordinate system

Lattice

- The regions which constitute the elementary cell (*prototype*) to be replicated, have to be defined in detail
- The Lattices (replicas/containers) have to be defined as "empty" regions in their correct location.
 WARNING: The lattice region should map exactly the outer surface definition of the elementary cell.
- The lattice regions are declared as such with a LATTICE card at the end of the geometry input
- In the LATTICE card, the user also assigns lattice names/numbers to the lattices. These names/numbers will identify the replicas in all FLUKA routines and scoring
- Several basic cells and associated lattices can be defined within the same geometry, one LATTICE card will be needed for each set
- Non-replicas carry the lattice number **0**
- Lattices and plain regions can coexist in the same problem

LATTICE card

After the Regions definition and before the GEOEND card the user can insert the LATTICE cards

- WHAT(1), WHAT(2), WHAT(3) Container region range (from, to, step)
- WHAT(4), WHAT(5), WHAT(6)
 Name/number(s) of the lattice(s)
- SDUM blank ROT#nn name

to use the transformation from the lattic routine to use a ROT-DEFI rotation/translation from input

the same as above but identifying the roto-translation by the name assigned in the ROT-DEFI SDUM (any alphanumeric string you like)

Example

LATTICE		Reg: TARGR1 ▼	to Reg: ▼	Step:
ld: 1tra	▼	Lat: 1.0	to Lat: 1.0	Step: 1.0
*+1.	+2.	+3+	4 + 5	.+6+7+.
LATTICE	6.00000	19.00000	101.0000	114.00

Region # 6 to 19 are the "placeholders" for the first set replicas. We assign to them lattice numbers from 101 to 114

LATTICE TARGR1 TargRep 1tra

TARGR1 is the container region using transformation 1tra

Example

Example

Example

Transformation by input

- Rotations/Translations can be defined with the ROT-DEFIni card
- Can be assigned to a lattice by name or with ROT#nnn SDUM in the LATTICE card
- ROT-DEFIni cards can be consecutive (using the same index or name) to define complex transformations

WARNING:

Since matrix multiplication is not commutative the order of the Rotation/Translation operations in 3D is important.

Numerical Precision

• Due to the nature of the floating point operations in CPU, even if the transformation looks correct the end result could be problematic

This small misalignment between lattice/transformation/prototype could lead to geometry errors

- Use as many digits as possible to describe correctly the prototype and lattice cells as well as the transformation.
 - It is mandatory that the transformation applied to the container makes the latter EXACTLY corresponding to the prototype
- One can use a FREE and FIXED card before and after the ROT-DEFI to input more than 9 digits
- GEOBEGIN WHAT(2) allows to relax the accuracy in boundary identification (USE WITH CAUTION)

Lattice: Important remarks

- Materials and other properties have to be assigned only to the regions constituting the prototype.
- In all (user) routines the region number refers to the corresponding one in the prototype.
- The SCORE summary in the .out file and the scoring by regions add together the contributions of the prototype region as well as of all its replicas!
- The lattice identity can be recovered runtime by the *lattice number*, as set in the LATTICE card, or available through the GEON2L routine if is defined by name
- In particular, the LUSRBL user routine allows to manage the scoring on lattices in the special USRBIN/EVENTBIN structure.

The USRBIN/EVENTBIN special binning

EVENTBIN or USRBIN with WHAT(1)=8:

Special user-defined 3D binning. Two variables are discontinuous (e.g. region number), the third one is continuous, but not necessarily a space coordinate.

Variable	Туре	Default	Override Routine
1 st	integer	region number	MUSRBR
2 nd	integer	lattice cell number	LUSRBL
3 rd	float	zero	FUSRBV

Tips & Tricks

- Always remember that the transformation must bring the container onto the prototype and not viceversa!
- You can always divide a transformation into many ROT-DEFI cards for easier manipulation.
- Rotations are always around the origin of the geometry, and not the center of the object.
 - To rotate an object, first translate the object to the origin of the axes
 - Perform the rotation
 - Move it by a final translation to the requested position.
 Of course with the inverse order since everything should apply to the replica
- In order to define the replica body, you can clone the body enclosing the prototype (assigning it a new name!) and apply to it the \$Start_transform directive with the inverse of the respective ROT-DEFI transformation.

Tips & Tricks

57031185 y. 0 z. 708.8481185 u. 561.24712 v. 278.04803 Region: LINE

z: 664.79487734 u: 516.19288 v: 433.80798 Region: LINI

GEOBEGIN

• • •

RPP CollProt -540.0 -460.0 -20.0 20.0 100.0 300.0 \$start_transform **-rotColl** * RPP CollRepl -540.0 -460.0 -20.0 20.0 100.0 300.0 \$end transform

...

GEOEND

ROT-DEFI, 1.0, 0.0, 0.0, 0.0, 0.0, -350.0, rotColl [A] ROT-DEFI, 201.0, 0.0, -15.0, 0.0, 0.0, 0.0, rotColl [B] ROT-DEFI, 1.0, 0.0, 0.0, -500.0, 0.0, 200.0, rotColl [C]

* Remember: if R=CBA, then R-1=A-1B-1C-1

Tips & Tricks

- The Geometry transformation editor in flair can read and write ROT-DEFI cards with the transformation requested
- An easy way of creating a replica and the associated transformation is the following:
 - 1. Select the body defining the outer cell of the prototype
 - 2. Clone it with (Ctrl-D) and change the name of the clones. Click on "No" when you are prompted to change all references to the original name.
 - 3. Open the Geometry transformation dialog (Ctrl-T)
 - 4. Enter the transformation of the object in the listbox
 - 5. Click on "Transform" to perform the transformation on the clone bodies
 - 6. Click on "Invert" button to invert the order of the transformation
 - 7. Enter a name on the "ROT-DEFIni" field and click "Add to Input" to create the ROT-DEFIni cards
 - 8. Now you have to create manually the needed regions and the LATTICE cards