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Action

Sbulk =
1

2

∫
d2σ

(
∂1X

AHAB∂1X
B − ∂1XAηAB∂0X

B

)
.

The notations are α = 0, 1 (We use the Greek indices to indicate

the worldsheet coordinates.), A = 0, 1, · · · , 2D − 1 ( We define the

double target indices from A to K .), and
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XA ≡

(
X̃m

Xm

)
,

H−1 ≡ H• • =
(
HAB

)−1
=

(
g−1 −g−1B

Bg−1 g − Bg−1B

)
.

The index m = 0, 1, · · · ,D − 1 (We define the non-double target

indices from m to z .). The ordinary coordinates are defined to be

Xm and dual coordinates are defined to be X̃m.
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We also define

H ≡ H• • .

The name for H is generalized metric. For double target indices,

we use η ≡

(
0 I

I 0

)
to raise and lower indices for the O(D,D)

tensors. The index α is raised and lowered by the flat metric. The

worldsheet metric is (−,+) signature.
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Using the strong constraints ∂̃m=0 (∂m ≡ ∂
∂xm , ∂̃

m ≡ ∂
∂x̃m

and

∂A ≡

(
∂̃m

∂m

)
.) and a self-duality relation

Hm
B∂1X

B − ηmB∂0X
B = 0

to guarantee classical equivalence with the ordinary sigma model.

The ordinary sigma model is

1

2

∫
d2σ

(
∂αX

mgmn∂
αX n − εαβ∂αXmBmn∂βX

n

)
.
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Boundary Conditions

• We replace Bmn by Bmn − Fmn to reconstruct our double

sigma model.

The boundary conditions on σ1-direction (The Neumann boundary

condition) are

Hm
A∂1X

A − ηmA∂0X
A = 0, HmA∂1X

A = 0, ηmA∂0X
A = 0

and the boundary condition on σ0-direction (The Dirichlet

boundary condition) is

δXm = 0.
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Low-Energy Effective Action

ST = S1 + αS2

=

∫
dx dx̃

[
e−d

(
− det(Hmn)

) 1
4

+αe−2d
(

1

8
HAB∂AHCD∂BHCD −

1

2
HAB∂BHCD∂DHAC

−2∂Ad∂BHAB + 4HAB ∂Ad∂Bd

)]
,

where α is an arbitrary constant and

e−d ≡
(
− det g

) 1
4

e−φ.
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Quantum Equivalence with the Strong Constraints

When we perform Gaussian integration, the result of the

integration on the exponent is equivalent to using

∂1X̃p = gpn∂0X
n + Bpn∂1X

n.

Then we integrate out the dual coordinates:

1

2
∂1X

m

(
g − Bg−1B

)
mn

∂1X
n + ∂1X

m

(
Bg−1

)
m

n∂1X̃n

= −1

2
∂0X

mgmn∂0X
n +

1

2
∂1X

mgmn∂1X
n + ∂1X

mBmn∂0X
n.
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When we perform the Gaussian integration, we have a non-trivial

determinant term.

The measure of the double sigma model∫
DXA

becomes ∫
DXm

√
det g ≡

∫
D ′Xm

when we integrate out the dual coordinates. We obtain the

diffemorphism invariant measure (D ′Xm) with shift symmetry.
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Seiberg-Witten Map

Â(A) + δ̂λ̂(A) = Â(A + δλA),

where Â is the Seiberg-Witten map, δλ is gauge transformation on

the commutative space and δ̂λ̂ is gauge transformation on the

non-commutative space. On the non-commutative space, field

strength is given by

F̂µν = ∂µÂν − ∂νÂµ + [Âµ, Âν ]∗.
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The gauge transformations are

δλAµ ≡ ∂µλ, δ̂λ̂Âµ ≡ ∂µλ̂− [λ̂, Âµ]∗.

We find a solution at leading order,

Âµ = Aµ − θρσ
(
Aρ∂σAµ −

1

2
Aρ∂µAσ

)
, λ̂ = λ+

1

2
θρσAσ∂ρλ.

F̂µν ≈ Fµν + θρσ
(
FµρFνσ − Aρ∂σFµν

)
.
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From the Poisson limit to infinite orders,

δÂµ = −1

4
δθρσ

[
Âρ ∗

(
2∂σÂµ − ∂µÂσ

)
+

(
2∂σÂµ − ∂µÂσ

)
∗ Âρ

]
,

δλ̂ =
1

4
δθρσ

(
∂ρλ̂ ∗ Âσ + Âρ ∗ ∂σλ̂

)
,

δF̂µν =
1

4
δθρσ

[
2F̂µρ ∗ F̂νσ + 2F̂νσ ∗ F̂µρ − Âρ ∗

(
∂σF̂µν + D̂σF̂µν

)
−
(
∂σF̂µν + D̂σF̂µν

)
∗ Âρ

]
,

where

D̂λF̂µν ≡ ∂λF̂µν + [Âλ, F̂µν ]∗.
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• If we do not use the strong constraints, we should have a

combination of B − F . Non-commutative geometry can be

constructed from gauge symmetries without using action.

Double sigma model should have potentials to build the

non-commutative geometry on the bulk
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Conclusion and Discussion

• We show equivalence between standard and double sigma

models.

• Without using the strong constraints, we have global

symmetry structures to avoid the non-gauge invariant

entanglement entropy on closed string.

• Non-Commutative geometry of closed string should shed the

light on all α′ effects from the Moyal product.
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